米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 発電 -> トヨタ自動車株式会社

発明の名称 熱電発電充電制御装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−14162(P2007−14162A)
公開日 平成19年1月18日(2007.1.18)
出願番号 特願2005−193715(P2005−193715)
出願日 平成17年7月1日(2005.7.1)
代理人 【識別番号】100079049
【弁理士】
【氏名又は名称】中島 淳
発明者 土屋 次郎
要約 課題
熱電変換器の発電量を考慮し蓄電池を効率的に充電する。

解決手段
予め記憶した、所定の走行コースを走行した時の電力の積算値を読み出し、初期化として、オルタネータオフ、DC−DCコンバータオン、バッテリの充電状態の閾値の上限値SOCmax=SOCmax1、下限値SOCmin=SOCmin1に設定し(200、202)、読出し電力の積算値に基づき、補機負荷の電力積算値(ΣP0)より熱電モジュールの推定電力積算値(ΣηPn)が大きい場合に、バッテリ電力の充電状態の閾値の範囲を拡大する(204、206)。そして、バッテリの充電状態が上限値より大きい場合にDC−DCコンバータをオフし(208、210)、下限値より小さい場合にオルタネータをオンすると共にDC−DCコンバータをオンし(212、214)、上限値と下限値の間の場合にオルタネータをオフすると共に、DC−DCコンバータをオンする(216、218)。
特許請求の範囲
【請求項1】
熱を電力に変換して発電する熱電変換器と、
自動車の駆動源を利用して発電する発電器と、
前記熱電変換器及び前記発電器の少なくとも一方の発電電力によって充電される蓄電池と、
前記熱電変換器及び前記発電器の発電状態を変更する変更手段と、
前記蓄電池の充電状態を表す物理量を監視して監視結果に基づいて、前記蓄電池が過不足なく充電されるように、前記変更手段を制御する制御手段と、
を備えた熱電発電充電制御装置。
【請求項2】
前記制御手段は、前記物理量が予め定めた下限値より小さい場合に、前記熱電変換器及び前記発電器の双方の発電電力を前記蓄電池に供給するように、前記変更手段を制御することを特徴とする請求項1に記載の熱電発電充電制御装置。
【請求項3】
前記制御手段は、前記物理量が予め定めた上限値より大きい場合に、前記熱電変換器及び前記発電器の双方の発電電力の前記蓄電池への供給を禁止するように、前記変更手段を制御することを特徴とする請求項1又は請求項2に記載の熱電発電充電制御装置。
【請求項4】
前記制御手段は、前記物理量が予め定めた上限値と下限値の間の場合に、前記熱電変換器の発電電力を前記蓄電池に供給すると共に、前記発電器の発電電力の前記蓄電池への供給を禁止するように、前記変更手段を制御することを特徴とする請求項1乃至請求項3の何れか1項に記載の熱電発電充電制御装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は、熱電発電充電制御装置にかかり、特に、熱電素子を用いて自動車の排気ガスの排気経路に発生する熱や各種熱などを利用して発電すると共に、エンジン動力によって発電する発電器により発電して、バッテリ等への充電を制御する熱電発電充電制御装置に関する。
【背景技術】
【0002】
ハイブリッド自動車では、エンジン及びモータジェネレータを備えて、少なくとも一方を動力源として走行する。ハイブリッド自動車は、モータジェネレータを動力源として走行するための蓄電池を備えており、該蓄電池に蓄電された電力でモータジェネレータを駆動する。
【0003】
モータジェネレータは、モータとジェネレータの双方の機能を有しており、基本的には、モータジェネレータを動力源として走行する際には蓄電池に蓄電された電力でモータジェネレータが駆動されてモータとして機能し、エンジンを動力源として走行する際には発電器として機能する。
【0004】
このようなハイブリッド自動車では、蓄電池の充電量に蓄電された電力を効率的に使用するための各種技術が提案されている。例えば、特許文献1に記載の技術では、ナビゲーションシステムを用いて車両がこれから走行する予定走行路における走行条件に関する情報を取得して、取得した予定走行路の走行条件に基づいて、該予定走行路を走行する際のエンジン及びモータジェネレータの運転量を試算して、バッテリの充電量を制御することが提案されている。例えば、特許文献1に記載の技術では、次に走行する区間が登坂路である場合には、回生充電量が多い時に、バッテリの充電状態(SOC)の上限値を超えた充電量TCOまで充電するようにして、登坂路で効率的に走行できるようにしている。
【0005】
一方、ハイブリッド自動車に限らず、自動車の蓄電池を充電する技術として、自動車の排気ガスの排気経路やエンジン等の発熱部位に熱電素子等の熱電変換器を設けて、熱を電力に変換して熱電発電を行う技術などが提案されている。
【特許文献1】特開2001−197608号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に記載の技術では、予定走行路における走行条件に基づいて、エンジン及びモータジェネレータの運転量を試算して、バッテリの充電量を制御することで、バッテリを効率的に充電することができるものの、熱電変換器による発電量を考慮した充電を行ってないので、蓄電池の充電制御に改良の余地がある。
【0007】
本発明は、上記事実を考慮して成されたもので、熱電変換器による発電量を考慮して蓄電池を効率的に充電することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するために請求項1に記載の発明は、熱を電力に変換して発電する熱電変換器と、自動車の駆動源を利用して発電する発電器と、前記熱電変換器及び前記発電器の少なくとも一方の発電電力によって充電される蓄電池と、前記熱電変換器及び前記発電器の発電状態を変更する変更手段と、前記蓄電池の充電状態を表す物理量を監視して監視結果に基づいて、前記蓄電池が過不足なく充電されるように、前記変更手段を制御する制御手段と、を備えたことを特徴としている。
【0009】
請求項1に記載の発明によれば、熱電変換器では、熱が電力に変換されることで発電される。例えば、熱電変換器としては、公知の熱電素子を適用することができるが、複数の熱電素子を組み合わせて構成してもよい。
【0010】
発電器では、自動車の駆動源を利用して発電される。例えば、エンジン等の自動車の駆動源を利用して発電してバッテリなどの蓄電池を充電するオルタネータや、ハイブリッド自動車等に搭載されるモータと発電機能を備えたモータジェネレータ等を適用することができる。
【0011】
また、蓄電池は、熱電変換器及び発電器の少なくとも一方の発電電力によって充電される。
【0012】
一方、変更手段では、熱電変換器及び発電器の発電状態が変更される。例えば、変更手段は、発電状態の変更として、熱電変換器及び発電器によって発電したそれぞれの電力の蓄電池への供給の有無等を変更する。
【0013】
そして、制御手段では、蓄電池の充電状態を表す物理量(例えば、蓄電池に入出力される電力を積算して得られる値や、当該値を用いて算出できる蓄電池の残量や充電量等)を監視して、監視結果に基づいて、蓄電池が過不足なく充電されるように、変更手段が制御される。すなわち、熱電変換器及び発電器のそれぞれの発電状態を適宜変更して蓄電池を充電することができるので、熱電変換器のみならず、発電器と熱電変換器の双方の発電量を考慮して蓄電池を効率的に充電することができる。
【0014】
例えば、制御手段は、請求項2に記載の発明のように、蓄電池の充電状態を表す物理量が予め定めた下限値より小さい場合に、熱電変換器及び発電器の双方の発電電力を蓄電池に供給するように、変更手段を制御するようにしてもよい。このように制御することによって、熱電変換器及び発電器の双方の発電電力を用いて蓄電池を充電することができるので、速やかに蓄電池を充電することができ、蓄電池の充電不足を早急に解消することができる。
【0015】
また、制御手段は、請求項3に記載の発明のように、蓄電池の充電状態を表す物理量が予め定めた上限値より大きい場合に、熱電変換器及び発電器の双方の発電電力の蓄電池への供給を禁止するように、変更手段を制御するようにしてもよい。このように制御することによって、蓄電池への充電が禁止されるので、蓄電池の過充電を防止することができ、蓄電池の劣化を防止することができる。
【0016】
さらに、制御手段は、請求項4に記載の発明のように、蓄電池の充電状態を表す物理量が予め定めた上限値と下限値の間の場合に、熱電変換器の発電電力を蓄電池に供給すると共に、発電器の発電電力の蓄電池への供給を禁止するように、変更手段を制御するようにしてもよい。このように制御することによって、発電器よりも熱電変換器による発電を優勢し、熱電変換器のみによって蓄電池を充電するので、発電器の発電によるエンジン負荷増大を防止し、燃費を向上することができる。
【0017】
なお、制御手段は、所定の走行コースを走行する際に、予め所定のコースを走行することによって測定された前記蓄電池の消費電力量と、前記走行コースを走行することによって得られる前記熱電変換器の推定発電量と、を比較し、前記推定発電量の方が大きい場合に、前記充電状態を表す物理量に対する予め定めた閾値の範囲を拡大設定して、前記充電状態を表す物理量と前記閾値に基づいて前記変更手段を制御するようにしてもよい。
【0018】
例えば、所定の走行コースを走行する際に、該所定の走行コースを予め走行した時の蓄電池が消費される消費電力量を測定し、所定の走行コースを走行した時の車速やエンジン回転数等に基づいて熱電変換器の発電電力量を推定する。そして、蓄電池の消費電力量と、熱電変換器の推定発電電力量を比較して、熱電変換器の推定発電電力量の方が大きい場合には、より多くのエネルギーを蓄電池に回収する必要があるため、充電状態を表す物理量に対する予め定めた閾値の範囲を拡大設定し、充電状態を表す物理量が閾値の下限値より小さい場合に、熱電変換器と発電器の双方で発電し、充電状態を表す物理量が閾値の上限値より大きい場合には、熱電変換器と発電器の双方の発電電力の蓄電池への供給を禁止し、充電状態を表す物理量が閾値の上限値と下限値の間の場合には、熱電変換器の発電電力のみを蓄電池に供給する。このように制御手段が制御することによって、実走行データを基に発電電力量と消費電力量を見積もって閾値を変更して制御するため、蓄電池の充電制御を高精度に行うことができる。
【発明の効果】
【0019】
以上説明したように本発明によれば、蓄電池の充電状態を表す物理量を監視して監視結果に基づいて、蓄電池が過不足なく充電されるように、熱電変換器及び発電器の発電状態の変更を制御することで、熱電変換器及び発電器のそれぞれの発電状態を適宜変更して蓄電池を充電することができるので、熱電変換器による発電量を考慮して蓄電池を効率的に充電することができる、という効果がある。
【発明を実施するための最良の形態】
【0020】
以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。なお、本実施の形態は、エンジン駆動によって走行する自動車に、熱を電力に変換する熱電モジュールを搭載した場合の蓄電池の充電制御に本発明を適用したものである。
【0021】
図1は、本発明の実施の形態に係わる熱電発電充電制御装置の構成を示すブロック図である。
【0022】
本発明の実施の形態に係わる熱電発電充電制御装置10は、図1に示すように、熱電モジュール12を備えている。熱電モジュール12は、熱を電力に変換する複数の熱電素子を複数組み合わせて構成されており、例えば、自動車の排気ガスの排気経路やエンジン等の熱を発生する部分に設け、自動車の排気ガスやエンジン等の発熱体の熱を電力に変換する。
【0023】
熱電モジュール12は、DC−DCコンバータ14を介して補機負荷(例えば、エアコンやライト類等)16及びバッテリ18に接続されており、熱電モジュール12によって発電された電力は、DC−DCコンバータ14によって電力変換されて補機負荷16及びバッテリ18に供給される。
【0024】
この時、熱電モジュール12によって発電された電力は、DC−DCコンバータ14のオンオフによって、補機負荷16及びバッテリ18への供給や非供給を制御することが可能とされている。
【0025】
また、自動車に搭載されたオルタネータ20は、エンジン駆動を利用して発電し、補機負荷16やバッテリ18に電力を供給する。本実施の形態では、オルタネータ20は、オンオフ制御可能なものが適用される。例えば、オルタネータ20の回転軸に設けられたプーリを、エアコンコンプレッサ等に用いる電磁クラッチ等を用いて制御することで、オルタネータ20のオンオフを制御することができるが、これに限定されるものではない。
【0026】
また、本実施の形態では、熱電モジュール12の発電電力Pn、DC−DCコンバータ14から出力される電力Pddc、オルタネータ20の発電電力Pg、バッテリ18に入出力される電力Pbatt、及び補機負荷16に供給される電力P0の各電力を検出する検出手段22が設けられており、検出手段22の検出結果がコントローラ24に入力されるようになっている。例えば、検出手段22としては、各部位の電流及び電圧を検出して電力を検出することができる。なお、本実施の形態では、検出手段22は、DC−DCコンバータ14から出力される電力Pddc及びオルタネータ20の発電電力Pgの検出は省略して、熱電モジュール12の発電電力Pn、バッテリ18に入出力される電力Pbatt、及び補機負荷16に供給される電力P0のみを検出するようにしてもよい。
【0027】
そして、熱電モジュール12によって発電される電力及びオルタネータ20によって発電される電力の補機負荷16及びバッテリ18への供給は、コントローラ24によって制御される。すなわち、コントローラ24は、図1に示すように、オルタネータ20に接続されていると共に、DC−DCコンバータ14に接続されており、オルタネータ20及びDC−DCコンバータ14のオンオフを制御することにより、オルタネータ20の発電及び熱電モジュール12の発電状態を変更して、バッテリ18の充電を制御する。
【0028】
コントローラ24は、エンジンの駆動を制御するエンジンECU26にも接続されており、エンジンECU26から自動車の走行状態(例えば、車速やエンジン回転数等の熱電モジュール12の熱変化を推定することが可能なパラメータ)を取得して、取得した走行状態に基づいて、熱電モジュール12の発電電力を推定する機能を有している。例えば、熱電モジュール12の発電電力の推定は、図2に示すような、車速v又は回転数rpmに対応する推定発電量Pnを予めマップとして記憶しておき、エンジンECU26から取得した車速vや回転数rpmから熱電モジュール12の発電電力を推定することが可能である。
【0029】
更に、コントローラ24は、検出手段22によって検出されたバッテリ18に入出力される電力Pbattをモニタして、バッテリ18の充電状態を監視する。詳細には、コントローラ24は、バッテリ18に入出力される電力の積算値(SOC)を充電状態を表す物理量として算出することによって、バッテリ18の充電状態を監視する。なお、本実施形態では、バッテリ18に入出力される電力Pbattの積算値(SOC)をモニタするが、これに限るものではなく、例えば、バッテリ18に入出力される電力の積算値(SOC)を用いて算出できるバッテリ18の充電量や残量等を監視するようにしてもよい。また、以下の説明では、バッテリ18の充電状態を表す積算値(SOC)を単にバッテリ18の充電状態(SOC)という。
【0030】
また、コントローラ24には、操作部28が接続されている。操作部28は、所定の走行コースを走行時に、補機負荷16の電気負荷を検出手段22によって電力モニタして電力の積算値を走行コースに対応してコントローラ24に記憶させるためのモニタ開始スイッチと、モニタされた走行コースを走行する際にコントローラ24に記憶された走行コースに対応する電力の積算値に基づいてバッテリ充電量の制御を開始させるための制御開始スイッチを含んで構成されている。
【0031】
続いて、上述のように構成された本発明の実施の形態に係わる熱電発電充電制御装置10のコントローラ24で行われるバッテリ18の充電制御について説明する。
【0032】
本実施の形態に係わる熱電発電制御装置10は、所定の走行コース(例えば、通勤路や頻繁に走行するコース)等を予め走行した時の補機負荷16で消費される消費電力量を測定すると共に、熱電モジュール12の発電電力量を推定して記憶しておき(電力モニタ)、電力モニタによって取得された消費電力量と推定発電電力量を用いてバッテリ18の充電制御を行う。
【0033】
図3は、本発明の実施の形態に係わる熱電発電充電制御装置10のコントローラ24において電力モニタを行う際に行われる処理の流れの一例を示すフローチャートである。
【0034】
まず、ステップ100では、電力モニタを開始するか否か判定される。該判定は、操作部28の操作状態に基づいて判定される。すなわち、乗員によって操作部28が操作されて電力モニタの開始指示が行われたか否かを判定することによってなされ、該判定が否定された場合には肯定されるまで待機してステップ102へ移行する。
【0035】
ステップ102では、DC−DCコンバータ14がオフされてステップ104へ移行する。すなわち、熱電モジュール12の発電電力の補機負荷16及びバッテリ18への供給が禁止される。
【0036】
ステップ104では、検出手段22によって、オルタネータ20の発電電力Pg、バッテリ18に入出力される電力Pbatt、及び補機負荷16に供給されて消費する電力P0が計測される。すなわち、坂道や渋滞などの発生が走行コース毎に異なるので、電力モニタする走行コースのオルタネータ20の発電電力Pg、バッテリ18に供給される電力Pbatt、及び補機負荷16が消費する電力P0がそれぞれ計測される。
【0037】
続いて、ステップ106では、熱電モジュール12の発電電力が推定される。すなわち、上記同様に、坂道や渋滞などの発生が走行コース毎に異なるので、電力モニタする走行コースの熱電モジュール12の発電電力Pnが推定される。熱電モジュール12の発電電力の推定は、例えば、エンジンECU26から車速を取得し、車速に対応する熱電モジュール12の発電電力を予め定めたマップを用いて推定してもよいし、エンジンECU26からエンジン回転数を取得し、回転数に対応する熱電モジュール12の発電電力を予め定めたマップを用いて推定するようにしてもよい。
【0038】
次に、ステップ108では、ステップ104で計測された各電力の積算値(ΣPg、ΣPbatt、ΣP0)、及びステップ106で推定された熱電モジュール12の推定発電電力の積算値(ΣPn)が算出されて、ステップ110へ移行する。すなわち、補機負荷16による消費電力量を含む各電力量及び熱電モジュール12の推定発電電力量が算出される。
【0039】
ステップ110では、電力モニタ終了か否か判定される。該判定は、操作部28の操作状態に基づいて判定される。すなわち、所定の走行コースの走行が終了して、乗員によって操作部28が操作されて電力モニタの終了が指示されたか否かを判定することによってなされ、該判定が否定された場合にはステップ104に戻って上述の処理が繰り返され、ステップ110の判定が肯定されたところでステップ112へ移行する。
【0040】
ステップ112では、ステップ108で算出された各電力の積算値がモニタした走行コースに対応してコントローラ24に記憶されて一連の処理を終了する。
【0041】
なお、各電力の積算値と走行コースの対応は、例えば、操作部28として複数のスイッチを設け、何れかのスイッチの操作に対応させて各電力の積算値を記憶するようにしてもよい。この場合には、スイッチ操作で走行コースに対応する各電力の積算値をコントローラ24に読み出すことができる。
【0042】
次に、上述のように電力モニタされた走行コースを走行する際のバッテリ18の充電制御について説明する。
【0043】
図4は、本発明の実施の形態に係わる熱電発電充電制御装置10のコントローラ24において電力モニタされた走行コースを走行する際に行われる処理の流れの一例を示すフローチャートである。
【0044】
ステップ200では、上述の電力モニタを行った際にコントローラ24に記憶した電力積算値が読み込まれて、ステップ202へ移行する。なお、電力積算値の読み込みは、操作部28の操作によって走行コースに対応する電力積算値が読み込まれる。
【0045】
ステップ202では、初期化として、オルタネータ20の発電がオフ、DC−DCコンバータ14の電力変換がオンされ、オルタネータ20及びDC−DCコンバータ14のオンオフ制御を行うためのバッテリ18の充電状態(SOC)の閾値として、バッテリ18の充電状態の上限値(SOCmax)が第1の上限値(SOCmax1)とされ(SOCmax=SOCmax1)、バッテリ18の充電状態の下限値(SOCmin)が第1の下限値(SOCmin1)とされる(SOCmin=SOCmin1)。
【0046】
続いて、ステップ204では、補機負荷の負荷電力の積算値(ΣP0)と熱電モジュール12の推定発電電力の積算値(ΣηPn:ηはDC−DCコンバータ14の効率)が比較され、負荷電力の積算値の方が熱電モジュール12の推定発電電力の積算値よりも小さい場合には、判定が肯定されてステップ206へ移行し、負荷電力の積算値の方が熱電モジュール12の推定発電電力よりも大きい場合には、判定が否定されてステップ208へ移行する。
【0047】
ステップ206では、熱電モジュール12の発電電力が大きいので、より多くのエネルギーを回収する必要があり、これに対応するために、バッテリ18の充電状態の上限値(SOCmax)及び下限値(SOCmin)の値が、上限値(SOCmax2)、下限値(SOCmin2)に変更されて、上限値と下限値の範囲が拡大設定される。なお、SOCmax1<SOCmax2、SOCmin1>SOCmin2である。
【0048】
一方、ステップ204の判定が否定された場合には、負荷電力の積算値の方が熱電モジュール12の推定発電電力よりも大きいので、バッテリ18の充電状態の上限値及び下限値はそのまま、すなわち、ステップ206で設定した範囲よりも狭く設定したままステップ208へ移行する。
【0049】
続いて、ステップ208では、バッテリ18の充電状態(SOC)が上限値(SOCmax)より大きいか否か判定され、該判定が肯定された場合にはステップ210へ移行し、否定された場合にはそのままステップ212へ移行する。
【0050】
ステップ210では、バッテリ18の充電状態(SOC)が上限値(SOCmax)よりも大きいので、バッテリ18の過充電を防止するために、DC−DCコンバータ14がオフされて熱電モジュール12の電力変換が停止される。
【0051】
ステップ212では、バッテリ18の充電状態(SOC)が下限値(SOCmin)より小さいか否か判定され、該判定が肯定された場合にはステップ214へ移行し、否定された場合にはそのままステップ216へ移行する。
【0052】
ステップ214では、バッテリ18の充電状態(SOC)が下限値(SOCmin)よりも小さいので、バッテリ18の充電量が不足しないように、オルタネータ20及びDC−DCコンバータ14がオンされる。これによって、オルタネータ20によって発電された電力と熱電モジュール12によって発電された電力が補機負荷16及びバッテリ18に供給され、バッテリ18の充電量不足が解消される。
【0053】
ステップ216では、バッテリ18の充電状態(SOC)が下限値(SOCmin)と上限値(SOCmax)の間であるか否か判定され、該判定が肯定された場合にはステップ218へ移行し、否定された場合にはそのままステップ220へ移行する。
【0054】
ステップ218では、バッテリ18の充電状態(SOC)が過不足ない状態であるので、オルタネータ20による発電をオフすると共に、DC−DCコンバータ14をオンして熱電モジュール12のみによる発電を行う。
【0055】
そして、ステップ220では、イグニッションスイッチ(IG)がオフされたか否か判定され、該判定が否定された場合には、ステップ208に戻って上述の処理が繰り返され、判定が肯定されたところで一連の処理を終了する。なお、ステップ220の判定は、操作部28の操作によって、電力モニタされた走行コースの走行終了が指示されたか否かを判定するようにしてもよい。
【0056】
このように、本発明の実施の形態に係わる熱電発電充電制御装置10は、所定の走行コースを予め走行して電力のモニタを行って、電力モニタを行った結果に基づいて、オルタネータ20及びDC−DCコンバータ14のオンオフ制御を行うためのバッテリ18の充電状態(SOC)の閾値を設定して、実走行データを基に、オルタネータ20及び熱電モジュール12の発電量と、補機負荷16の負荷電力を見積もっているので、オルタネータ20及び熱電モジュール12のオンオフ制御を高精度に行うことができる。
【0057】
また、本発明の実施の形態では、バッテリ18の充電状態の物理量(SOC)の監視結果に基づいて、バッテリ18が過不足なく充電されるように、オルタネータ20及び熱電モジュール12の発電状態を変更するように制御しており、これによって、バッテリ18の能力の範囲内で最大限のエネルギー充電を行うことができる。また、オルタネータ20による発電は、エンジン負荷を増大させ、燃費低下を招くが、可能な限りオルタネータ20による発電を制約することができるため、燃費向上の効果も得ることができる。更に、オルタネータ20による発電が制約されることによって、熱電モジュール12の電力回収率を向上させることができる。
【0058】
また、本実施の形態では、ナビゲーションシステム搭載の制約を受けないので、例えば通勤時或いは頻繁に出かける遠距離の場所等の走行コースを電力モニタして、バッテリ18の充電制御を行うことができるので、安価に熱電発電充電制御装置10を車両に搭載することができる。
【0059】
なお、上記の実施の形態では、ナビゲーションシステムを搭載しない場合を例に挙げて説明したが、ナビゲーションシステムを搭載して、上記のバッテリ18の充電制御を行うようにしてもよい。この場合には、所定の走行コースを走行して行う電力モニタは、ナビゲーションシステムの情報を利用して、電力モニタの開始及び停止、並びに走行コースと電力モニタの結果の対応を自動的に行うことが可能である。
【0060】
また、上記の実施の形態では、エンジンによって走行する自動車を例として説明したが、これに限るものではなく、例えば、モータ及びエンジンを備えたハイブリッド自動車等に適用するようにしてもよい。この場合には、オルタネータ20の代わりにモータジェネレータを適用することができ、熱電モジュール12は、例えばモータジェネレータの熱などを利用して発電することが可能である。
【図面の簡単な説明】
【0061】
【図1】本発明の実施の形態に係わる熱電発電充電制御装置の構成を示すブロック図である。
【図2】車速又は回転数に対する熱電モジュールの推定発電電力のマップの一例を示す図である
【図3】本発明の実施の形態に係わる熱電発電充電制御装置のコントローラにおいて電力モニタを行う際に行われる処理の流れを示すフローチャートである。
【図4】本発明の実施の形態に係わる熱電発電充電制御装置のコントローラにおいて電力モニタされた走行コースを走行する際に行われる処理の流れの一例を示すフローチャートである。
【符号の説明】
【0062】
10 熱電発電充電制御装置
12 熱電モジュール
14 DC−DCコンバータ
16 補機負荷
18 バッテリ
20 オルタネータ
22 検出手段
24 コントローラ




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013