Warning: copy(.htaccess): failed to open stream: Permission denied in /home/jp321/public_html/header.php on line 8
電子機器並びに該電子機器に用いられる電池パック及び負荷装置 - 松下電器産業株式会社
米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 発電 -> 松下電器産業株式会社

発明の名称 電子機器並びに該電子機器に用いられる電池パック及び負荷装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−43888(P2007−43888A)
公開日 平成19年2月15日(2007.2.15)
出願番号 特願2006−163264(P2006−163264)
出願日 平成18年6月13日(2006.6.13)
代理人 【識別番号】100067828
【弁理士】
【氏名又は名称】小谷 悦司
発明者 高田 雅弘 / 市瀬 俊彦 / 嶋本 健
要約 課題
燃料電池から負荷変動の激しい負荷装置に電力を供給することができる電子機器を提供する。

解決手段
燃料電池101と二次電池102との間に双方向電圧コンバータ103が接続され、負荷装置200の複数の電圧コンバータ211、212、221、222を、それぞれの出力電圧が、燃料電池101の出力電圧よりも二次電池102の出力電圧に近ければ第1の電圧コンバータ群201に、二次電池102の出力電圧よりも燃料電池101の出力電圧に近ければ第2の電圧コンバータ群202に分類して、第1の電圧コンバータ群201には二次電池102が並列接続され、第2の電圧コンバータ群202には燃料電池101が並列接続される。
特許請求の範囲
【請求項1】
電源部と、負荷装置とを備え、
前記電源部は、
燃料電池と、
二次電池と、
前記燃料電池と前記二次電池との間に接続され、前記燃料電池の出力電圧と前記二次電池の出力電圧とを双方向に変換する双方向電圧コンバータとを備え、
前記負荷装置は、前記燃料電池に並列接続されることを特徴とする電子機器。
【請求項2】
前記負荷装置は、
前記燃料電池の出力電圧より前記二次電池の出力電圧に近い電圧を出力する第1の電圧コンバータと、
前記二次電池の出力電圧より前記燃料電池の出力電圧に近い電圧を出力する第2の電圧コンバータと、
前記第1及び第2の電圧コンバータから電力を供給され、当該負荷装置の機能を実行する機能回路とを備え、
前記第1の電圧コンバータは、前記二次電池に並列接続され、
前記第2の電圧コンバータは、前記燃料電池に並列接続されることを特徴とする請求項1記載の電子機器。
【請求項3】
前記電源部は、前記負荷装置に対して着脱可能な電池パックを含み、
前記負荷装置は、前記第1の電圧コンバータの入力と、前記第2の電圧コンバータの入力とを短絡又は開放するスイッチをさらに備え、
前記スイッチは、前記電池パックが前記負荷装置に装着された場合のみ開放され、それ以外の場合には短絡されることを特徴とする請求項2記載の電子機器。
【請求項4】
前記第1の電圧コンバータは、前記燃料電池の出力電圧より前記二次電池の出力電圧に近い電圧を出力する複数の第1の電圧コンバータを含み、
前記第2の電圧コンバータは、前記二次電池の出力電圧よりも前記燃料電池の出力電圧に近い電圧を出力する複数の第2の電圧コンバータを含み、
前記複数の第1の電圧コンバータは、前記二次電池に並列接続され、
前記複数の第2の電圧コンバータは、前記燃料電池に並列接続されることを特徴とする請求項2記載の電子機器。
【請求項5】
前記双方向電圧コンバータは、前記燃料電池の発生電流が前記負荷装置の消費電流より小さい場合、前記負荷装置の消費電流の不足分を前記二次電池から前記負荷装置に供給し、前記燃料電池の発生電流が前記負荷装置の消費電流より大きい場合、前記燃料電池の発生電流の余剰分を前記二次電池に供給することを特徴とする請求項1〜4のいずれかに記載の電子機器。
【請求項6】
前記燃料電池の出力電圧は、前記二次電池の出力電圧より低く、
前記双方向電圧コンバータは、前記燃料電池の出力電圧を前記二次電池の出力電圧に昇圧する昇圧型の双方向電圧コンバータを含み、
前記電源部は、前記燃料電池の出力電圧を検出して前記燃料電池の出力電圧が一定になるように前記昇圧型の双方向電圧コンバータを制御する制御回路をさらに備えることを特徴とする請求項1〜5のいずれかに記載の電子機器。
【請求項7】
前記昇圧型の双方向電圧コンバータは、前記燃料電池側の電圧をV1、前記二次電池側の電圧をV2、PWM信号のデューティー比をDtとしたとき、V2/V1=1/(1−Dt)の関係を満たす同期整流型の双方向DC/DC電圧コンバータを含み、
前記制御回路は、前記燃料電池の出力電圧が一定になるように前記PWM信号のデューティー比Dtを制御することを特徴とする請求項6記載の電子機器。
【請求項8】
前記燃料電池の出力電圧は、前記二次電池の出力電圧より高く、
前記双方向電圧コンバータは、前記燃料電池の出力電圧を前記二次電池の出力電圧に降圧する降圧型の双方向電圧コンバータを含み、
前記電源部は、前記燃料電池の出力電圧を検出して前記燃料電池の出力電圧が一定になるように前記降圧型の双方向電圧コンバータを制御する制御回路をさらに備えることを特徴とする請求項1〜5のいずれかに記載の電子機器。
【請求項9】
前記降圧型の双方向電圧コンバータは、前記燃料電池側の電圧をV1、前記二次電池側の電圧をV2、PWM信号のデューティー比をDtとしたとき、V2/V1=(1−Dt)の関係を満たす同期整流型の双方向DC/DC電圧コンバータを含み、
前記制御回路は、前記燃料電池の出力電圧が一定になるように前記PWM信号のデューティー比Dtを制御することを特徴とする請求項8記載の電子機器。
【請求項10】
前記燃料電池は、メタノール直接型燃料電池を含むことを特徴とする請求項1〜9のいずれかに記載の電子機器。
【請求項11】
前記二次電池は、Liイオン電池を含むことを特徴とする請求項1〜10のいずれかに記載の電子機器。
【請求項12】
燃料電池と、
二次電池と、
前記燃料電池と前記二次電池との間に接続され、前記燃料電池の出力電圧と前記二次電池の出力電圧とを双方向に変換する双方向電圧コンバータとを備えることを特徴とする電池パック。
【請求項13】
燃料電池及び二次電池を備える電池パックを用いる負荷装置であって、
前記燃料電池の出力電圧より前記二次電池の出力電圧に近い電圧を出力する第1の電圧コンバータと、
前記二次電池の出力電圧よりも前記燃料電池の出力電圧に近い電圧を出力する第2の電圧コンバータと、
前記第1及び第2の電圧コンバータから電力を供給され、当該負荷装置の機能を実行する機能回路と、
前記二次電池から前記第1の電圧コンバータに電力を供給するための第1の端子と、
前記燃料電池から前記第2の電圧コンバータに電力を供給するための第2の端子とを備えることを特徴とする負荷装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は、燃料電池を備えた電子機器並びに該電子機器に用いられる電池パック及び負荷装置に関し、特に、その好適な電源部の回路構成に関する。
【背景技術】
【0002】
従来、ノート型コンピュータや携帯電話等の電子機器には、複数個の電圧コンバータがあり、二次電池の電圧を降圧する電圧コンバータや、二次電池の電圧を昇圧する電圧コンバータによって複数の電圧を出力する電源を有している。これらの複数の電圧コンバータの入力電源として、二次電池に接続する方法が一般的である。
【0003】
図10は、市販ノートパソコンなどの従来の電子機器のブロック図である。電池パック400は、燃料電池を含まず、二次電池102のみからなり、二次電池102の両端子106、108が負荷装置300の両端子306、308に接続される。負荷装置300では、4つの電圧コンバータ311〜314の入力電力は、すべて二次電池102から供給され、電圧コンバータ311〜314は、変換後の電圧V1〜V4を機能回路303へ出力する。
【0004】
また、近年では、ノート型コンピュータや携帯電話等の電子機器の電源として、長時間連続して電力を供給することができる燃料電池が注目されている。これらの電子機器は、一般に負荷変動が激しいのに対し、燃料電池の発電電力は、急激には変動できないため、燃料電池の発電電力を二次電池に充電しながら、電子機器には二次電池から電力を供給する、いわゆるハイブリッド型の燃料電池システムが、様々な形で提案されている。この中で、例えば、特許文献1には、燃料電池と複数個の二次電池と複数個の機能回路とを有する携帯端末を用いて、エネルギー利用効率の向上を図る方法が示されている。
【0005】
一方、燃料電池の発電電力を二次電池に充電するには、燃料電池の電圧を二次電池の電圧に変換する電圧コンバータ(DC/DCコンバータ)が必要であり、この場合も複数の電圧コンバータの入力電源としては、二次電池に接続する方法が一般的であり、燃料電池の出力電圧を一定に制御する方法などが提案されている(例えば、特許文献2参照)。
【0006】
図11は、6セルを直列に接続した燃料電池の燃料の供給量に対する電流電圧特性を示す図である。図11において、縦軸はDMFC(Direct Methanol Fuel Cell)の出力電圧(V)を示し、横軸はDMFCの出力電流(A)を示している。また、C11、C12、C13は、それぞれ燃料の全体供給量が0.6cc/min、1.2cc/min、1.8cc/minの場合の電流電圧特性曲線を示している。
【0007】
図11から、燃料の供給量が高いほど、高い出力電流を得ることが可能となっていることが分かる。また、C11〜C13に示すように、出力電流が増大するにつれて、出力電圧が減少していることが分かる。
【0008】
また、燃料電池の出力電圧を一定に制御する場合、燃料(メタノール)の供給量が増加すると、出力電流(A)が増加する。図11に示す例では、燃料電池の出力電圧を2.4Vに一定に制御すると、燃料の全体供給量が各C11、C12、C13の場合、各々電流(A)はI1、I2、I3と増加する。したがって、燃料の全体供給量を制御することによって、燃料電池の発電電力を制御することができる。このように、燃料電池の発電電力を燃料供給量で制御するには、燃料電池の出力電圧を一定に制御する方法が望ましい。
【0009】
図12は、燃料電池を備える電池パックを用いた従来の電子機器のブロック図である。図12に示す負荷装置300は、図10と同様に構成され、電池パック500は、燃料電池101と、電圧コンバータ103と、二次電池102とから構成される。
【0010】
負荷装置300内には、12V、10V、1.5V、1.25Vの4つの電圧コンバータ311〜314からなる電圧コンバータ群301があり、12V、10V電圧コンバータ311、312は、昇圧回路であり、1.5V、1.25Vの電圧コンバータ313、314は、降圧回路であり、これらの4つの電圧コンバータ311〜314の消費電力は、すべて二次電池102から供給されることは、図10と同様である。
【特許文献1】特開2004−208344号公報
【特許文献2】米国特許第6,590,370号明細書
【発明の開示】
【発明が解決しようとする課題】
【0011】
しかしながら、従来のハイブリッド型の燃料電池システムでは、燃料電池から、負荷変動の激しい機能回路に電力を供給することは困難であった。なぜなら、供給する燃料流量を変化させても、燃料電池の出力電力は急激には変化しないので、負荷装置の電流値を急激な消費電力の変化に対応させることは、燃料電池の出力電流特性上不向きだからである。
【0012】
また、図12に示す従来の電子機器では、例えば、燃料電池101の出力電圧が2.4V、二次電池102の出力電圧が6〜8.4Vの場合、1.5V、1.25Vの電圧コンバータ313、314の電力は、定常的には燃料電池101からの電圧を、電圧コンバータ103で昇圧して二次電池102に充電し、そこから1.5V、1.25Vに降圧しており、燃料電池101の出力電圧を昇圧した後、さらに降圧して利用している。そのため、電力損失が発生して不効率である。
【0013】
また、燃料電池101の出力電圧が10V、二次電池102の出力電圧が6〜8.4Vの場合、12V、10Vの電圧コンバータ311、312の電力は、定常的には燃料電池101からの電圧を、電圧コンバータ103で降圧して二次電池102に充電し、そこから12V、10Vに昇圧しており、燃料電池101の出力電圧を降圧した後、さらに昇圧して利用している。そのため、電力損失が発生して不効率である。
【0014】
このように、従来のハイブリッド型の燃料電池システムの場合、負荷装置300への電力は、二次電池102から供給されるため、機能回路303の電源電圧が燃料電池101の出力電圧よりも低い場合、たとえば機能回路303がCPU回路などの場合でも、機能回路303へ電力を供給する電圧コンバータの入力は、二次電池102から供給する必要がある。この結果、燃料電池101の出力電圧を二次電池102の出力電圧に昇圧した後、その二次電池102の出力電圧を燃料電池101の出力電圧より低い、機能回路303の電源電圧に降圧することが行われたり、その逆に、燃料電池101の出力電圧を二次電池102の出力電圧に降圧した後、その二次電池102の出力電圧を燃料電池101の出力電圧より高い、機能回路303の電源電圧に昇圧することなどが行われたりするため、エネルギーの利用効率上、電力変換損失が生じ、望ましくない状況になっていた。
【0015】
本発明の目的は、燃料電池から負荷変動の激しい負荷装置に電力を供給することができる電子機器を提供することである。
【課題を解決するための手段】
【0016】
本発明に係る電子機器は、電源部と、負荷装置とを備え、前記電源部は、燃料電池と、二次電池と、前記燃料電池と前記二次電池との間に接続され、前記燃料電池の出力電圧と前記二次電池の出力電圧とを双方向に変換する双方向電圧コンバータとを備え、前記負荷装置は、前記燃料電池に並列接続される。
【0017】
この電子機器においては、燃料電池から出力された電圧が双方向電圧コンバータにより一定に調整される。このとき、双方向電圧コンバータを用いているので、燃料電池に接続している負荷装置の消費電流が急激に増加して燃料電池の発電電力以上に消費される場合や、燃料電池の起動時及び燃料流量の増加時等において燃料電池の発電電力が急には増加せず負荷装置の消費電力より小さい場合など、すなわち、燃料電池の発電電力が負荷装置で消費される電力より小さい場合でも、双方向電圧コンバータが二次電池から燃料電池の出力側に電力を供給し、燃料電池の両端の電圧は一定に保たれる。そのため、負荷装置に電力が安定的に供給されるので、負荷装置が時間的に負荷変動の大きい場合でも、燃料電池から電力供給が可能となる。
【0018】
前記負荷装置は、前記燃料電池の出力電圧より前記二次電池の出力電圧に近い電圧を出力する第1の電圧コンバータと、前記二次電池の出力電圧より前記燃料電池の出力電圧に近い電圧を出力する第2の電圧コンバータと、前記第1及び第2の電圧コンバータから電力を供給され、当該負荷装置の機能を実行する機能回路とを備え、前記第1の電圧コンバータは、前記二次電池に並列接続され、前記第2の電圧コンバータは、前記燃料電池に並列接続されることが好ましい。
【0019】
この場合、燃料電池の出力電圧より二次電池の出力電圧に近い電圧を出力する第1の電圧コンバータが二次電池に並列接続され、二次電池の出力電圧より前記燃料電池の出力電圧に近い電圧を出力する第2の電圧コンバータが燃料電池に並列接続されているので、第1及び第2の電圧コンバータの昇圧比又は降圧比をできるだけ1に近づけることができる。したがって、電源部内で昇圧した後に第1及び第2の電圧コンバータで降圧して電力を利用することや、電源部内で降圧した後に第1及び第2の電圧コンバータで昇圧して電力を利用することを回避することができるので、第1及び第2の電圧コンバータでの電力損失を低減し、エネルギー利用効率を向上させた電子機器を提供することができる。また、従来に比べて電子機器の連続使用時間を延長することもできる。
【0020】
前記電源部は、前記負荷装置に対して着脱可能な電池パックを含み、前記負荷装置は、前記第1の電圧コンバータの入力と、前記第2の電圧コンバータの入力とを短絡又は開放するスイッチをさらに備え、前記スイッチは、前記電池パックが前記負荷装置に装着された場合のみ開放され、それ以外の場合には短絡されることが好ましい。
【0021】
この場合、上記の第2の電圧コンバータに並列接続される燃料電池を含む電池パックが装着されていないときには、第1の電圧コンバータの入力と第2の電圧コンバータの入力を短絡することによって、第1及び第2の電圧コンバータを従来の電子機器のごとく一つの電圧コンバータ群とみなせる構成とし、上記の第2の電圧コンバータに並列接続される燃料電池を含む電池パックに代えて、従来の燃料電池を含まない電池パック、又は燃料電池を含む従来の電池パックに交換した場合でも、互換性を保って負荷装置を使用することができる。
【0022】
前記第1の電圧コンバータは、前記燃料電池の出力電圧より前記二次電池の出力電圧に近い電圧を出力する複数の第1の電圧コンバータを含み、前記第2の電圧コンバータは、前記二次電池の出力電圧よりも前記燃料電池の出力電圧に近い電圧を出力する複数の第2の電圧コンバータを含み、前記複数の第1の電圧コンバータは、前記二次電池に並列接続され、前記複数の第2の電圧コンバータは、前記燃料電池に並列接続されることが好ましい。
【0023】
この場合、各群に含まれる電圧コンバータの昇圧比又は降圧比をできるだけ1に近づけるように、複数の電圧コンバータを第1及び第2の電圧コンバータ群に分類することで、電源部内で昇圧した後に第1及び第2の電圧コンバータ群で降圧して電力を利用することや、電源部内で降圧した後に第1及び第2の電圧コンバータ群で昇圧して電力を利用することを回避することができ、多数の電圧コンバータでの電力損失を低減し、エネルギー利用効率をより向上させることができる。
【0024】
前記双方向電圧コンバータは、前記燃料電池の発生電流が前記負荷装置の消費電流より小さい場合、前記負荷装置の消費電流の不足分を前記二次電池から前記負荷装置に供給し、前記燃料電池の発生電流が前記負荷装置の消費電流より大きい場合、前記燃料電池の発生電流の余剰分を前記二次電池に供給することが好ましい。
【0025】
この場合、燃料電池の発生電流が負荷装置の消費電流より小さいときには、負荷装置の消費電流の不足分を二次電池から負荷装置に供給するので、燃料電池の両端の電圧を一定に保ちながら、負荷装置に電力を供給することができるとともに、燃料電池の発生電流が負荷装置の消費電流より大きいときには、燃料電池の発生電流の余剰分を二次電池に供給しているので、燃料電池の余剰電力を二次電池に蓄えることができ、燃料電池の電力を有効利用することができる。
【0026】
前記燃料電池の出力電圧は、前記二次電池の出力電圧より低く、前記双方向電圧コンバータは、前記燃料電池の出力電圧を前記二次電池の出力電圧に昇圧する昇圧型の双方向電圧コンバータを含み、前記電源部は、前記燃料電池の出力電圧を検出して前記燃料電池の出力電圧が一定になるように前記昇圧型の双方向電圧コンバータを制御する制御回路をさらに備えることが好ましい。
【0027】
この場合、燃料電池の出力電圧を検出して燃料電池の出力電圧が一定になるように昇圧型の双方向電圧コンバータが制御されるので、燃料電池の出力電圧が二次電池の出力電圧より低い場合に、燃料電池の両端の電圧を一定に保ちながら、負荷装置に電力を供給することができるとともに、燃料電池の余剰電力を二次電池に蓄えることができ、燃料電池の電力を有効利用することができる。
【0028】
前記昇圧型の双方向電圧コンバータは、前記燃料電池側の電圧をV1、前記二次電池側の電圧をV2、PWM信号のデューティー比をDtとしたとき、V2/V1=1/(1−Dt)の関係を満たす同期整流型の双方向DC/DC電圧コンバータを含み、前記制御回路は、前記燃料電池の出力電圧が一定になるように前記PWM信号のデューティー比Dtを制御することが好ましい。
【0029】
この場合、燃料電池の出力電圧が一定になるようにPWM信号のデューティー比を制御しているので、燃料電池の出力電圧が二次電池の出力電圧より低い場合に、PWM信号のデューティー比を変化させるという簡略な制御方法を用いて、燃料電池の両端の電圧を一定に保ちながら、負荷装置に電力を供給することができるとともに、燃料電池の余剰電力を二次電池に蓄えることができ、燃料電池の電力を有効利用することができる。
【0030】
前記燃料電池の出力電圧は、前記二次電池の出力電圧より高く、前記双方向電圧コンバータは、前記燃料電池の出力電圧を前記二次電池の出力電圧に降圧する降圧型の双方向電圧コンバータを含み、前記電源部は、前記燃料電池の出力電圧を検出して前記燃料電池の出力電圧が一定になるように前記降圧型の双方向電圧コンバータを制御する制御回路をさらに備えるようにしてもよい。
【0031】
この場合、燃料電池の出力電圧を検出して燃料電池の出力電圧が一定になるように降圧型の双方向電圧コンバータが制御されるので、燃料電池の出力電圧が二次電池の出力電圧より高い場合に、燃料電池の両端の電圧を一定に保ちながら、負荷装置に電力を供給することができるとともに、燃料電池の余剰電力を二次電池に蓄えることができ、燃料電池の電力を有効利用することができる。
【0032】
前記降圧型の双方向電圧コンバータは、前記燃料電池側の電圧をV1、前記二次電池側の電圧をV2、PWM信号のデューティー比をDtとしたとき、V2/V1=(1−Dt)の関係を満たす同期整流型の双方向DC/DC電圧コンバータを含み、前記制御回路は、前記燃料電池の出力電圧が一定になるように前記PWM信号のデューティー比Dtを制御することが好ましい。
【0033】
この場合、燃料電池の出力電圧が一定になるようにPWM信号のデューティー比を制御しているので、燃料電池の出力電圧が二次電池の出力電圧より高い場合に、PWM信号のデューティー比を変化させるという簡略な制御方法を用いて、燃料電池の両端の電圧を一定に保ちながら、負荷装置に電力を供給することができるとともに、燃料電池の余剰電力を二次電池に蓄えることができ、燃料電池の電力を有効利用することができる。
【0034】
前記燃料電池は、メタノール直接型燃料電池を含むことが好ましい。この場合、燃料電池を小型化して電源部を小型化することができるので、電子機器を小型化することができる。
【0035】
前記二次電池は、Liイオン電池を含むことが好ましい。この場合、二次電池を小型化して電源部を小型化することができるので、電子機器を小型化することができる。
【0036】
また、本発明に係る電池パックは、燃料電池と、二次電池と、前記燃料電池と前記二次電池との間に接続され、前記燃料電池の出力電圧と前記二次電池の出力電圧とを双方向に変換する双方向電圧コンバータとを備える。
【0037】
この電池パックが負荷装置に装着された場合、燃料電池から出力された電圧が双方向電圧コンバータにより一定に調整される。このとき、双方向電圧コンバータを用いているので、燃料電池の発電電力が負荷装置で消費される電力より小さい場合でも、双方向電圧コンバータが二次電池から燃料電池の出力側に電力を供給し、燃料電池の両端の電圧は一定に保たれる。そのため、負荷装置に電力が安定的に供給されるので、負荷装置が時間的に負荷変動の大きい場合でも、燃料電池から電力供給が可能となる。
【0038】
また、本発明に係る負荷装置は、燃料電池及び二次電池を備える電池パックを用いる負荷装置であって、前記燃料電池の出力電圧より前記二次電池の出力電圧に近い電圧を出力する第1の電圧コンバータと、前記二次電池の出力電圧よりも前記燃料電池の出力電圧に近い電圧を出力する第2の電圧コンバータと、前記第1及び第2の電圧コンバータから電力を供給され、当該負荷装置の機能を実行する機能回路と、前記二次電池から前記第1の電圧コンバータに電力を供給するための第1の端子と、前記燃料電池から前記第2の電圧コンバータに電力を供給するための第2の端子とを備える。
【0039】
この負荷装置に燃料電池及び二次電池を備える電池パックが装着された場合、第1の端子を用いて二次電池から第1の電圧コンバータに電力が供給され、第1の電圧コンバータが燃料電池の出力電圧より二次電池の出力電圧に近い電圧を出力し、第2の端子を用いて燃料電池から第2の電圧コンバータに電力が供給され、第2の電圧コンバータが二次電池の出力電圧よりも燃料電池の出力電圧に近い電圧を出力するので、第1及び第2の電圧コンバータの昇圧比又は降圧比をできるだけ1に近づけることができる。したがって、昇圧した後に降圧して電力を利用することや、降圧した後に昇圧して電力を利用することを回避することができ、電圧コンバータでの電力損失を低減し、エネルギー利用効率を向上させた電子機器を提供することができる。
【発明の効果】
【0040】
本発明によれば、燃料電池から出力される電圧が双方向電圧コンバータにより一定電圧に調整される。このとき、双方向電圧コンバータを用いているので、燃料電池の発電電力が負荷装置で消費される電力より小さい場合でも、双方向電圧コンバータが、燃料電池の両端の電圧を一定に保ちながら、二次電池から燃料電池の出力側に電力を供給することができる。したがって、負荷装置に電力が安定的に供給されるので、負荷装置の負荷変動が時間的に大きい場合でも、燃料電池から電力供給が可能となり、燃料電池から負荷変動の激しい負荷装置に電力を供給することができる。
【発明を実施するための最良の形態】
【0041】
以下、本発明による各実施の形態について、図面を用いて説明する。
【0042】
(第1の実施の形態)
まず、本発明の第1の実施の形態による電子機器について説明する。図1は、本発明の第1の実施の形態による電子機器のブロック図である。
【0043】
図1に示す電子機器は、電池パック100と、負荷装置600とを備え、電池パック100は、燃料電池101と、二次電池102と、双方向電圧コンバータ103と、制御回路104と、整流素子110とを備えている。燃料電池101は、アクティブ型DMFC(Direct Methanol Fuel Cell)を6セル直列に接続したものであり、二次電池102は、2個のLiイオン電池を直列に接続したものである。
【0044】
なお、燃料電池及び二次電池は、上記の例に特に限定されず、燃料電池として、パッシブ型DMFC、DDFC(Direct DME Fuel Cell)、RMFC(Reformed Methanol Fuel Cell)等を用いたり、二次電池として、ニッケル・水素蓄電池等を用いたりしてもよく、また、各電池の直列数等も種々の変更が可能である。
【0045】
整流素子110は、燃料電池101と双方向電圧コンバータ103との間に接続され、燃料電池101の発生する電圧が目標とする電圧より低い場合に、燃料電池101に電流が流れ込むのを避ける。また、整流素子110に代えてスイッチを設けて、二次電池102から負荷装置600に電流が供給される時には、このスイッチを開放するようにしてもよい。
【0046】
負荷装置600は、CPU回路等の負荷変動の激しい機能回路、及び機能回路に電力を供給する電圧コンバータ等を備える。負荷装置600(電子機器)としては、モバイル機器が用いられ、例えば、ノート型パーソナルコンピュータ、携帯電話機等が用いられる。
【0047】
まず、燃料電池101の出力電圧を二次電池102の出力電圧より低く設定した場合について説明する。本実施の形態では、双方向電圧コンバータ103として、以下に説明する昇圧型の双方向電圧コンバータが用いられ、制御回路104は、燃料電池101の出力電圧が2.4Vになるように、昇圧型の双方向電圧コンバータ103に印加されるPWM信号のデューティー比を調整する。また、燃料電池及び二次電池の出力電圧は、上記の例に特に限定されず、種々の変更が可能であり、他の実施の形態でも同様である。
【0048】
図2は、図1に示す双方向電圧コンバータ103として用いられる昇圧型の双方向電圧コンバータの構成を示す回路図である。図2に示す昇圧型の双方向電圧コンバータ103は、コイル11、スイッチング素子12、13、反転器14、コンデンサ15、16を備える。
【0049】
コンデンサ15は、燃料電池101側の出力端子と燃料電池101側及び二次電池102側に共通の接地端子との間に接続され、コンデンサ16は、二次電池102側の出力端子と燃料電池101側及び二次電池102側に共通の接地端子との間に接続される。コイル11の一端は、燃料電池101側の出力端子に接続され、他端はスイッチング素子12、13の一端に接続される。スイッチング素子12の他端は、燃料電池101側及び二次電池102側に共通の接地端子に接続され、スイッチング素子13の他端は、二次電池102側の出力端子に接続される。
【0050】
スイッチング素子12の制御端子は、制御回路104からPWM信号を受け、スイッチング素子12は、ハイレベルの信号が入力されるとオンし、ローレベルの信号が入力されるとオフする。反転器14は、制御回路104からのPWM信号を反転してスイッチング素子13の制御端子へ出力し、スイッチング素子13は、ハイレベルの信号が入力されるとオンし、ローレベルの信号が入力されるとオフする。スイッチング素子12、13としては、例えば、FETを用いることができる。
【0051】
上記の各素子から同期整流型の双方向DC/DCコンバータが構成され、双方向電圧コンバータ103は、昇圧型の双方向電圧コンバータとして機能し、以下のようにして、燃料電池101の出力電圧2.4Vを二次電池102の出力電圧6〜8.4Vへ昇圧する。
【0052】
図3は、図1に示す制御回路104から出力されるPWM信号のデューティー比を説明するための波形図である。制御回路104は、図3で示すPWM信号を双方向電圧コンバータ103へ出力し、PWM信号のハイ期間Tonと1周期期間Tとから、下記の式(1)で示すデューティー比Dtが与えられる。
【0053】
Dt=Ton/T ・・・ (1)
制御回路104は、Tonの期間中にPWM信号をハイレベルで出力し、スイッチング素子12を短絡すると同時にスイッチング素子13を開放する。また、制御回路104は、Toffの期間中にPWM信号をローレベルで出力し、スイッチング素子12を開放すると同時にスイッチング素子13を短絡する。このように、スイッチング素子12、13を動作させると、燃料電池101の電圧V1(左側)と、二次電池102の出力電圧V2(右側)と、PWM信号のデューティー比Dtとには、下記の式(2)の関係が成立する。
【0054】
V2/V1=1/(1−Dt) ・・・ (2)
制御回路104は、燃料電池101の電圧V1を検出し、検出電圧と目標の2.4Vとの差を算出し、その差がゼロになるように、式(2)を用いてPWM信号のデューティー比Dtを算出し、算出したデューティー比DtのPWM信号を双方向電圧コンバータ103へ出力する。
【0055】
このように、本実施の形態では、燃料電池101の電圧V1を計測して、目標の2.4Vとの誤差を算出し、その誤差がゼロになるようにデューティー比を定めることによって、燃料電池101の電圧V1を2.4Vの一定値に制御することができる。
【0056】
次に、負荷装置600への電流の供給状況について説明する。図4は、6セルを直列に接続した燃料電池101の燃料の供給量に対する電流電圧特性と、負荷装置600への電流の供給状況とについて説明するための図である。図4の上段において、縦軸は燃料電池101の出力電圧(V)を示し、横軸は燃料電池101の出力電流(A)を示している。また、C11、C12、C13は、それぞれ燃料の全体供給量が0.8cc/min、1.6cc/min、3.2cc/minの場合の電流電圧特性曲線を示している。
【0057】
燃料電池101の起動時等の発電電力が小さいときや、負荷装置600の消費電流が急激に増加したときなどのように、電圧一定時の燃料電池101の発電電流が小さく、燃料電池101の発電電流が負荷装置600の消費電流より小さい場合、例えば、図4に示す発電電流がI1の場合には、燃料電池101の発電電流は、二次電池102から負荷装置600へ供給されるが、その不足分は、二次電池102から負荷装置600に電流が供給される。
【0058】
一方、燃料電池101の発電が安定し、電圧一定時の燃料電池101の発電電流が充分大きくなり、燃料電池101の発電電流が負荷装置600の消費電流より大きいの場合、例えば、図4に示す発電電流がI3の場合には、燃料電池101の発電電流は、負荷装置600へ供給されるとともに、その余剰分は二次電池102へ供給され、二次電池102が充電される。
【0059】
つまり、燃料電池101の出力電圧は、燃料電池101の発電電流Io、負荷装置600の消費電流Ic、及び二次電池102への電流Isの大小関係に関わりなく、一定になり、各電流に関して下記の式(3)が成立する。
【0060】
Io=Ic+Is・・・ (3)
ただし、二次電池102への電流Isは、マイナス時には二次電池102から負荷装置600へ電流が流れることを意味する。
【0061】
上記のように、本実施の形態では、燃料電池101側(V1側)から双方向電圧コンバータ103へ電流が流れ込む場合と、双方向電圧コンバータ103から燃料電池101側(V1側)に電流が供給される場合とがあり、いずれの場合であっても、図2に示す回路構成を有する昇圧型の双方向電圧コンバータ103により、燃料電池101の電圧V1を一定に制御することができる。この結果、負荷装置600に電力が安定的に供給されるので、負荷装置600の負荷変動が時間的に大きい場合でも、燃料電池101から電力供給が可能となり、燃料電池101から負荷変動の激しい負荷装置600に電力を供給することができる。
【0062】
(第2の実施の形態)
次に、本発明の第2の実施の形態による電子機器について説明する。図5は、本発明の第2の実施の形態による電子機器に用いられる降圧型の双方向電圧コンバータの構成を示す回路図である。本実施の形態の電子機器では、燃料電池の出力電圧が二次電池の出力電圧より高く設定され、降圧型の双方向電圧コンバータを用いて、燃料電池の出力電圧が10Vになるように、双方向電圧コンバータへ入力されるPWM信号のデューティー比が調整される。このため、本実施形態と第1の実施の形態とで異なる点は、図2に示す昇圧型の双方向電圧コンバータ103を図5に示す降圧型の双方向電圧コンバータ103aに変更した点であり、その他の点は、図1に示す電子機器と同様であるので、全体構成図として図1を代用し、新たな図示及び詳細な説明を省略する。
【0063】
図5に示す双方向電圧コンバータ103aは、コイル11、スイッチング素子12、13、反転器14、コンデンサ15、16を備える。
【0064】
コンデンサ15は、燃料電池101側の出力端子と燃料電池101側及び二次電池102側に共通の接地端子との間に接続され、コンデンサ16は、二次電池102側の出力端子と燃料電池101側及び二次電池102側に共通の接地端子との間に接続される。スイッチング素子13の一端は、燃料電池101側の出力端子に接続され、他端は、コイル11の一端及びスイッチング素子12の一端に接続される。コイル11の他端は、燃料電池101側の出力端子に接続され、スイッチング素子12の他端は、燃料電池101側及び二次電池102側に共通の接地端子に接続される。
【0065】
スイッチング素子12の制御端子は、制御回路104からPWM信号を受け、スイッチング素子12は、ハイレベルの信号が入力されるとオンし、ローレベルの信号が入力されるとオフする。反転器14は、制御回路104からのPWM信号を反転してスイッチング素子13の制御端子へ出力し、スイッチング素子13は、ハイレベルの信号が入力されるとオンし、ローレベルの信号が入力されるとオフする。スイッチング素子12、13としては、例えば、FETを用いることができる。
【0066】
上記の各素子から同期整流型の双方向DC/DCコンバータが構成され、双方向電圧コンバータ103aは、降圧型の双方向電圧コンバータとして機能し、以下のようにして、燃料電池101の出力電圧10Vを二次電池102の出力電圧6〜8.4Vへ降圧する。
【0067】
制御回路104は、デューティー比DtのPWM信号(図3参照)を双方向電圧コンバータ103aへ出力し、Tonの期間中にPWM信号をハイレベルで出力し、スイッチング素子12を短絡すると同時にスイッチング素子13を開放する。また、制御回路104は、Toffの期間中にPWM信号をローレベルで出力し、スイッチング素子12を開放すると同時にスイッチング素子13を短絡する。このように、スイッチング素子12、13を動作させると、燃料電池101の電圧V1(左側)と、二次電池102の出力電圧V2(右側)と、PWM信号のデューティー比Dtとには、下記の式(4)の関係が成立する。
【0068】
V2/V1=(1−Dt) ・・・ (4)
制御回路104は、燃料電池101の電圧V1を検出し、検出電圧と目標の10Vとの差を算出し、その差がゼロになるように、式(4)を用いてPWM信号のデューティー比Dtを算出し、算出したデューティー比DtのPWM信号を双方向電圧コンバータ103aへ出力する。
【0069】
このように、本実施の形態では、燃料電池101の電圧V1を計測して、目標の10Vとの誤差を算出し、その誤差がゼロになるようにデューティー比を定めることによって、燃料電池101の電圧V1を10Vの一定値に制御することができる。
【0070】
また、本実施の形態においても、図4を用いて説明したように、燃料電池101の出力電圧は、燃料電池101の発電電流Io、負荷装置600の消費電流Ic、及び二次電池102への電流Isの大小関係に関わりなく、一定になり、各電流に関して下記の式(5)が成立することも、第1の実施の形態と同様である。
【0071】
Io=Ic+Is ・・・ (5)
上記のように、本実施の形態でも、燃料電池101側(V1側)から双方向電圧コンバータ103aへ電流が流れ込む場合と、双方向電圧コンバータ103aから燃料電池101側(V1側)に電流が供給される場合とがあり、いずれの場合であっても、図5に示す回路構成を有する降圧型の双方向の電圧コンバータ103aにより、燃料電池101の電圧V1を一定に制御することができる。この結果、負荷装置600に電力が安定的に供給されるので、負荷装置600の負荷変動が時間的に大きい場合でも、燃料電池101から電力供給が可能となり、燃料電池101から負荷変動の激しい負荷装置600に電力を供給することができる。
【0072】
(第3の実施の形態)
次に、本発明の第3の実施の形態による電子機器について説明する。図6は、本発明の第3の実施の形態による電子機器の構成を示すブロック図である。
【0073】
図6に示す電子機器は、電池パック100と、負荷装置200とを備え、電池パック100は、燃料電池101と、二次電池102と、双方向電圧コンバータ103と、制御回路104と、整流素子110と、二次電池102の+端子106と、燃料電池101の+端子107と、二次電池102と燃料電池101との共通のグランド端子108とを備える。
【0074】
双方向電圧コンバータ103は、第1の実施の形態と同様に、図2に示す昇圧型の双方向電圧コンバータ103から構成され、燃料電池101の出力電圧2.4Vを二次電池102の出力電圧6〜8.4Vに昇圧する。制御回路104は、燃料電池101の電圧V1を計測して、目標の2.4Vとの誤差を算出し、その誤差がゼロになるようにPWM信号のデューティー比を定めることによって、燃料電池101の電圧V1を2.4Vに一定に制御する。
【0075】
負荷装置200は、複数の電圧コンバータをその出力電圧の大きさによって割り当てた第1の電圧コンバータ群201及び第2の電圧コンバータ群202と、負荷装置200の目的とする機能を実行する機能回路203と、二次電池102の+端子106に接続される、第1の電圧コンバータ群201の+端子206と、燃料電池101の+端子107に接続される、第2の電圧コンバータ群202の+端子207と、二次電池102と燃料電池101との共通のグランド端子108に接続される、第1の電圧コンバータ群201と第2の電圧コンバータ群202との共通のグランド端子208と、第1の電圧コンバータ群201の+端子206と第2の電圧コンバータ群202の+端子207とを短絡又は開放するスイッチ204とを備える。
【0076】
第1の電圧コンバータ群201は、電圧コンバータ211と、電圧コンバータ212とを備え、電圧コンバータ211の出力電圧は12Vであり、電圧コンバータ212の出力電圧は10Vである。第2の電圧コンバータ群202は、電圧コンバータ221と、電圧コンバータ222とを備え、電圧コンバータ221の出力電圧は1.5Vであり、電圧コンバータ222の出力電圧は1.25Vである。なお、第1及び第2の電圧コンバータ群201、202に含まれる電圧コンバータの数は、上記の例に特に限定されず、1個又は3個以上であってもよい。また、本実施の形態では、1つの機能回路を用いているが、この例に特に限定されず、複数の機能回路を用いてもよく、また、各機能回路は、全ての電圧コンバータから全ての電圧を供給されるのではなく、1又は2以上の所定の電圧コンバータから異なる電圧を供給されるようにしてもよい。
【0077】
本実施の形態では、燃料電池101の出力電圧が二次電池102の出力電圧より低く設定され、第1の実施の形態と同様に、双方向電圧コンバータ103としては、図2に示す昇圧型の双方向電圧コンバータ103が用いられ、制御回路104は、燃料電池101の出力電圧が2.4Vになるように、昇圧型の双方向電圧コンバータ103に印加されるPWM信号のデューティー比を調整する。
【0078】
燃料電池101の起動時のように発電電力が小さい時や、第2の電圧コンバータ群202の消費電力が大きい時など、燃料電池101の発電電力が負荷装置200の消費電力に対して不足している場合、双方向電圧コンバータ103は、二次電池102から燃料電池101側へ電力を供給し、燃料電池101の両端の電圧は、2.4Vに一定に保たれる。この電圧は、第2の電圧コンバータ群202に印加され、電力が供給される。
【0079】
燃料電池101への燃料供給量を増やして、発電電力が増加すると、燃料電池101の両端の電圧が一定に保たれながら、燃料電池101の電力が二次電池102へ供給される。つまり、燃料電池101の発電電力と第2の電圧コンバータ群202の消費電力との大小関係に関わらず、燃料電池101の両端の電圧は、一定に保たれる。
【0080】
このように、本実施の形態では、1.5V、1.25Vの電圧コンバータ221、222は、燃料電池101から2.4Vの電圧を受けて動作し、12V、10Vの電圧コンバータ211、212は、二次電池102から6〜8.4Vの電圧を受けて動作する。
【0081】
したがって、本実施の形態では、図12の従来例に比べ、燃料電池101の出力電圧2.4Vを二次電池102の出力電圧6〜8.4Vまで昇圧し、その電圧を第2の電圧コンバータ群202で1.25Vと1.5Vとに降圧するという効率の悪い電圧変換を回避し、電圧変換による電力損失を低減することができる。
【0082】
また、本実施の形態においても、図4を用いて説明したように、燃料電池101の出力電圧は、燃料電池101の発電電流Io、負荷装置200の消費電流Ic、二次電池102への電流Isの大小関係に関わりなく一定になり、下記式(6)が成立することも、第1及び第2の実施の形態と同様である。
【0083】
Io=Ic+Is ・・・ (6)
このように、燃料電池101側(V1側)から双方向電圧コンバータ103へ電流が流れ込む場合と、双方向電圧コンバータ103から燃料電池101側(V1側)に電流を供給する場合とがあり、いずれの場合であっても、図2に示す回路構成を有する昇圧型の双方向電圧コンバータ103により、燃料電池101の電圧V1を一定に制御することができる。この結果、負荷装置200に電力が安定的に供給されるので、負荷装置200の負荷変動が時間的に大きい場合でも、燃料電池101から電力供給が可能となり、燃料電池101から負荷変動の激しい負荷装置200に電力を供給することができる。
【0084】
(第4の実施の形態)
次に、本発明の第4の実施の形態による電子機器について説明する。図7は、本発明の第4の実施の形態による電子機器の構成を示すブロック図である。なお、本実施の形態において、降圧型の電圧コンバータを用いる点、及び複数の電圧コンバータのうち出力電圧が低い方を第1の電圧コンバータ群に、出力電圧が高い方を第2の電圧コンバータ群に分類して各々割り当てている点以外の構成は、第3の実施の形態と同様であるので、同様部分の詳しい説明は省略する。
【0085】
図7に示す電子機器は、電池パック100と、負荷装置200とを備え、電池パック100は、燃料電池101と、二次電池102と、双方向電圧コンバータ103aと、制御回路104と、整流素子110と、二次電池102の+端子106と、燃料電池101の+端子107と、二次電池102と燃料電池101との共通のグランド端子108とを備える。
【0086】
双方向電圧コンバータ103aは、第2の実施の形態と同様に、図5に示す降圧型の双方向電圧コンバータ103aから構成され、燃料電池101の出力電圧10Vを、二次電池102の出力電圧6〜8.4Vに降圧する。制御回路104は、燃料電池101の電圧V1を計測して、目標の10Vとの誤差を算出し、その誤差がゼロになるようにPWM信号のデューティー比を定めることによって、燃料電池101の電圧V1を10Vに一定に制御する。
【0087】
負荷装置200は、複数の電圧コンバータをその出力電圧の大きさによって割り当てた第1の電圧コンバータ群401及び第2の電圧コンバータ群402と、負荷装置200の目的とする機能を有する機能回路203と、二次電池102の+端子106に接続される、第1の電圧コンバータ群401の+端子206と、燃料電池101の+端子107に接続される、第2の電圧コンバータ群402の+端子207と、二次電池102と燃料電池101との共通のグランド端子108に接続される、第1の電圧コンバータ群401と第2の電圧コンバータ群402との共通のグランド端子208と、第1の電圧コンバータ群401の+端子206と第2の電圧コンバータ群402の+端子207とを短絡又は開放するスイッチ204とを備える。
【0088】
第1の電圧コンバータ群401は、電圧コンバータ411と、電圧コンバータ412とを備え、電圧コンバータ411の出力電圧は1.5Vであり、電圧コンバータ412の出力電圧は1.25Vである。第2の電圧コンバータ群402は、電圧コンバータ421と、電圧コンバータ422とを備え、電圧コンバータ421の出力電圧は12Vであり、電圧コンバータ422の出力電圧は10Vである。なお、第1及び第2の電圧コンバータ群401、402に含まれる電圧コンバータの数は、上記の例に特に限定されず、1個又は3個以上であってもよい。また、本実施の形態では、1つの機能回路を用いているが、この例に特に限定されず、複数の機能回路を用いてもよく、また、各機能回路は、全ての電圧コンバータから全ての電圧を供給されるのではなく、1又は2以上の所定の電圧コンバータから異なる電圧を供給されるようにしてもよい。
【0089】
本実施の形態では、燃料電池101の出力電圧が二次電池102の出力電圧より高く設定され、第2の実施の形態と同様に、双方向電圧コンバータ103aとしては、図5に示す降圧型の双方向電圧コンバータ103aが用いられ、制御回路104は、燃料電池101の出力電圧が10Vになるように、降圧型の双方向電圧コンバータ103aに印加されるPWM信号のデューティー比を調整する。
【0090】
燃料電池101の起動時のように発電電力が小さい時や、第2の電圧コンバータ群402の消費電力が大きい時など、燃料電池101の発電電力が負荷装置200の消費電力に対して不足している場合、双方向電圧コンバータ103aは、二次電池102から燃料電池101側へに電力を供給し、燃料電池101の両端の電圧は、10Vに一定に保たれる。この電圧は、第2の電圧コンバータ群402に印加され、電力が供給される。
【0091】
燃料電池101の発電電力が増加すると、燃料電池101の両端の電圧が一定に保たれながら、燃料電池101の電力が二次電池102に供給される。つまり、燃料電池101の発電電力と第2の電圧コンバータ群402の消費電力の大小関係に関わらず、燃料電池101の両端の電圧は、一定に保たれ、これらの点は第1乃至第3の実施の形態と同様である。
【0092】
このように、本実施の形態では、12V、10Vの電圧コンバータ421、422は、燃料電池101から10Vの電圧を受けて動作し、1.5V、1.25Vの電圧コンバータ411、412は、二次電池102から6〜8.4Vの電圧を受けて動作する。
【0093】
したがって、本実施の形態では、図12の従来例に比べ、12V、10Vの電圧コンバータ421、422の降圧比が1に近くなり、電力損失が低減される。特に、12Vの電圧コンバータ421に関しては、燃料電池101の出力電圧10Vを二次電池102の出力電圧6〜8.4Vまで降圧し、その電圧を12Vの電圧コンバータで12Vに昇圧するという効率の悪い電圧変換を回避し、電圧変換による電力損失を低減することができる。
【0094】
また、本実施の形態においても、図4を用いて説明したように、燃料電池101の出力電圧は、燃料電池101の発電電流Io、負荷装置200の消費電流Ic、二次電池102への電流Isの大小関係に関わりなく一定になり、下記式(7)が成立することも、第1乃至第3の実施の形態と同様である。
【0095】
Io=Ic+Is ・・・ (7)
このように、燃料電池101側(V1側)から双方向電圧コンバータ103aへ電流が流れ込む場合と、双方向電圧コンバータ103aから燃料電池101側(V1側)に電流を供給する場合とがあり、いずれの場合であっても、図5に示す回路構成を有する降圧型の双方向電圧コンバータ103aにより、燃料電池101の電圧V1を一定に制御することができる。この結果、負荷装置200に電力が安定的に供給されるので、負荷装置200の負荷変動が時間的に大きい場合でも、燃料電池101から電力供給が可能となり、燃料電池101から負荷変動の激しい負荷装置200に電力を供給することができる。
【0096】
(第5の実施の形態)
次に、本発明の第5の実施の形態による電子機器について説明する。図8は、本発明の第5の実施の形態による電子機器の構成を示すブロック図である。本実施の形態は、図6に示す負荷装置200に図10に示す従来の電池パック400を接続した電子機器であり、図6に示す負荷装置200が、2つの出力端子106、108だけを備えた従来の電池パック400を使用することができることを以下に説明する。
【0097】
負荷装置200は、第1の電圧コンバータ群201の+端子206と第2の電圧コンバータ群202の+端子207を短絡または開放するスイッチ204を備える。スイッチ204は、従来の電池パック400が装着された場合に短絡するために、通常、短絡するように構成されている。したがって、二次電池102の2個の出力端子106、108だけを備えた電池パック400が負荷装置200に装着された場合には、スイッチ204は短絡し、第1の電圧コンバータ群201及び第2の電圧コンバータ群202ともに、二次電池102から電力が供給され、機能回路203が動作する。
【0098】
一方、図6に示す三つの端子106〜108を有する電池パック100が負荷装置200に装着された場合、電池パック100及び負荷装置200を動作させるために、電池パック100にスイッチ204を機械的にオフにする機構をもたせることが好ましい。この場合、三つの端子106〜108を有する電池パック100が装着された場合には、スイッチ204が開放され、電池パック100及び負荷装置200は、第3の実施の形態と同様に動作することができる。
【0099】
例えば、スイッチ204として、2つの接続片を機械的に接触又は非接触にすることによりオン又はオフするリーフスイッチやメカニカルスイッチを用いるとともに、電池パック100に凸部を設け、電池パック100が負荷装置200に装着されると、この凸部がスイッチ204の接続片の一方を押圧して開状態にするようにしてもよい。
【0100】
また、同様の機能を電気的な信号に基づき実現するようにしてもよく、例えば、スイッチ204として、制御信号に応じてオン又はオフするFET等を用い、電池パック100が負荷装置200に装着された場合、電池パック100からスイッチ204をオフする制御信号をスイッチ204へ出力するようにしもよい。
【0101】
(第6の実施の形態)
次に、本発明の第6の実施の形態による電子機器について説明する。図9は、本発明の第6の実施の形態による電子機器の構成を示すブロック図である。本実施の形態は、図6に示す負荷装置200に図12に示す燃料電池101と二次電池102とからなる従来の電池パック500を接続した電子機器であり、図6に示す負荷装置200が、2つの出力端子106、108だけを備えた従来の電池パック500を使用することができることを以下に説明する。
【0102】
二次電池102の2個の出力端子106、108だけを備えた電池パック500が、負荷装置200装着された場合には、スイッチ204は、第5の実施の形態と同様に構成され、短絡する。この場合も、第5の実施の形態と同様に、第1の電圧コンバータ群201及び第2の電圧コンバータ群202ともに、二次電池102から電力が供給され、機能回路203が動作する。
【0103】
なお、上記の第5及び第6の実施の形態における負荷装置200及び電池パック100に関する構成は、第4の実施の形態の負荷装置200及び電池パック100にも同様に適用することができ、同様の効果を得ることができる。
【産業上の利用可能性】
【0104】
本発明によれば、燃料電池と二次電池とを用いる電子機器において、負荷変動の激しい機能回路の電力供給を燃料電池から行うことが可能になり、かつ、電圧を昇圧後に降圧して利用することや、電圧を降圧後に昇圧して利用するような無駄な電圧変化をなくして効率的な電圧変換を実現し、電力損失を低減した電子機器を提供することができるので、ノートPCや携帯電話のように複数の電圧出力の電源を必要とする電子機器において、有用である。
【図面の簡単な説明】
【0105】
【図1】本発明の第1の実施の形態による電子機器のブロック図である。
【図2】図1に示す双方向電圧コンバータとして用いられる昇圧型の双方向電圧コンバータの構成を示す回路図である。
【図3】図1に示す制御回路から出力されるPWM信号のデューティー比を説明するための波形図である。
【図4】6セルを直列に接続した燃料電池の燃料の供給量に対する電流電圧特性と、負荷装置への電流の供給状況とについて説明するための図である。
【図5】本発明の第2の実施の形態による電子機器に用いられる降圧型の双方向電圧コンバータの構成を示す回路図である。
【図6】本発明の第3の実施の形態による電子機器の構成を示すブロック図である。
【図7】本発明の第4の実施の形態による電子機器の構成を示すブロック図である。
【図8】本発明の第5の実施の形態による電子機器の構成を示すブロック図である。
【図9】本発明の第6の実施の形態による電子機器の構成を示すブロック図である。
【図10】従来の市販ノートパソコンなどの電子機器のブロック図である。
【図11】6セルを直列に接続した燃料電池の燃料の供給量に対する電流電圧特性を示す図である。
【図12】従来の燃料電池を備える電池パックを用いた電子機器のブロック図である。
【符号の説明】
【0106】
11 コイル
12、13 スイッチング素子
14 反転器
15、16 コンデンサ
100 電池パック
101 燃料電池
102 二次電池
103 双方向電圧コンバータ
104 制御回路
106 二次電池の+端子
107 燃料電池の+端子
108 グランド端子
110 整流素子
200、600 負荷装置
201 第1の電圧コンバータ群
202 第2の電圧コンバータ群
203 機能回路
204 スイッチ
206 第1の電圧コンバータ群の+端子
207 第2の電圧コンバータ群の+端子
208 グランド端子
211、212、221、222 電圧コンバータ




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013