米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 電気素子 -> エプソントヨコム株式会社

発明の名称 弾性表面波デバイス
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−88952(P2007−88952A)
公開日 平成19年4月5日(2007.4.5)
出願番号 特願2005−276908(P2005−276908)
出願日 平成17年9月22日(2005.9.22)
代理人
発明者 大脇 卓弥
要約 課題
水晶基板を用いた表面波デバイスであり、小型で、Q値が大きく、周波数エージング特性の優れたSH波型SAWデバイスを得る。

解決手段
圧電基板と、該圧電基板上に形成されAlを主成分とする合金からなるIDT電極とを備え、励振波をSH波とした弾性表面波デバイスであって、前記圧電基板は、回転Yカット水晶基板のカット角θを−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDT電極の波長で基準化した電極膜厚H/λを0.04<H/λ<0.12としたSH波型弾性表面波デバイスにおいて、前記IDT電極を陽極酸化してSH波型弾性表面波デバイスを構成する。
特許請求の範囲
【請求項1】
圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDT電極とを備え、励振波をSH波とした弾性表面波デバイスであって、
前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、
励振する弾性表面波の波長をλとした時、前記IDT電極の波長で基準化した電極膜厚H/λを0.04<H/λ<0.12としたSH波型弾性表面波デバイスにおいて、
前記IDT電極を陽極酸化したことを特徴とするSH波型弾性表面波デバイス。
【請求項2】
前記弾性表面波デバイスは、カット角θ及び電極膜厚H/λの関係が、−1.34082×10−4×θ3−2.34969×10−2×θ2−1.37506×θ−26.7895<H/λ<−1.02586×10−4×θ3 −1.73238×10−2×θ2−0.977607×θ−18.3420を満足していることを特徴とした請求項1に記載のSH波型弾性表面波デバイス。
【請求項3】
前記IDT電極を構成する電極指の電極指幅/(電極指幅+電極指間のスペース)をライン占有率mrとした時に、カット角θ及び電極膜厚とライン占有率の積(H/λ)×mrの関係が、−8.04489×10−5×θ3−1.40981×10−2×θ2−0.825038×θ−16.0737<H/λ×mr<−6.15517×10−5×θ3−1.03943×10−2×θ2−0.586564×θ−11.0052を満足していることを特徴とした請求項1に記載のSH波型弾性表面波デバイス。
【請求項4】
圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDT電極とを備え、励振波をSH波とした弾性表面波デバイスであって、
前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、
励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10とした弾性表面波デバイスにおいて、
前記IDT電極を陽極酸化したことを特徴とするSH波型弾性表面波デバイス。
【請求項5】
前記弾性表面波デバイスは、カット角θ及び電極膜厚H/λの関係が、−1.44605×10−4×θ3−2.50690×10−2×θ2−1.45086×θ−27.9464<H/λ<−9.87591×10−5×θ3−1.70304×10−2×θ2−0.981173×θ−18.7946を満足していることを特徴とした請求項4に記載のSH波型弾性表面波デバイス。
【請求項6】
前記IDT電極を構成する電極指の電極指幅/(電極指幅+電極指間のスペース)をライン占有率mrとした時に、カット角θ及び電極膜厚とライン占有率の積(H/λ)×mrの関係が、−8.67632×10−5×θ3−1.50414×10−2×θ2−0.870514×θ−16.7678<(H/λ)×mr<−5.92554×10−5×θ3−1.02183×10−2×θ2−0.588704×θ−11.2768を満足していることを特徴とした請求項4に記載のSH波型弾性表面波デバイス。
【請求項7】
前記弾性表面波デバイスは、前記圧電基板上にIDT電極を少なくとも1個配置した1ポートの弾性表面波共振子であることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイス。
【請求項8】
前記弾性表面波デバイスは、前記圧電基板の弾性表面波の伝搬方向に沿ってIDT電極を少なくとも2個配置した2ポートの弾性表面波共振子であることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイス。
【請求項9】
前記弾性表面波デバイスは、前記圧電基板の弾性表面波の伝搬方向に対して複数個の弾性表面波共振子を平行に近接配置した横結合型多重モードフィルタであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイス。
【請求項10】
前記弾性表面波デバイスは、前記圧電基板の弾性表面波の伝搬方向に沿って複数個のIDT電極からなる2ポートの弾性表面波共振子を配置した縦結合型多重モードフィルタであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイス。
【請求項11】
前記弾性表面波デバイスは、前記圧電基板上に複数個のSH波型弾性表面波共振子を梯子状に接続したラダー型弾性表面波フィルタあることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイス。
【請求項12】
前記弾性表面波デバイスは、前記圧電基板上に弾性表面波を双方向に伝搬させるIDT電極を所定の間隔を空けて複数個配置したトランスバーサルSAWフィルタであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイス。
【請求項13】
前記弾性表面波デバイスは、前記圧電基板上に弾性表面波を一方向に伝搬させるIDT電極を少なくとも1つ配置したトランスバーサルSAWフィルタであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイス。
【請求項14】
前記弾性表面波デバイスは、弾性表面波センサであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイス。
【請求項15】
前記弾性表面波デバイスは、IDT電極の両側にグレーティング反射器を有することを特徴とした請求項1乃至14のいずれかに記載のSH波型弾性表面波デバイス。
【請求項16】
請求項1乃至15のいずれかに記載のSH波型弾性表面波デバイスを用いたモジュール装置、又は発振回路。



発明の詳細な説明
【技術分野】
【0001】
本発明は、弾性表面波デバイス(SAWデバイス)に関し、特にIDT電極を陽極酸化し、エージング特性を改善したSH波型表面波デバイスに関する。
【背景技術】
【0002】
近年、SAWデバイスは通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話、LAN等に多く用いられている。STカット水晶基板(結晶軸Xを回転軸としてXZ面(Y面)を結晶軸Zより反時計方向に42.75°回転した水晶基板)上をX軸方向に伝搬するレイリー波((P+SV)波)を用いて構成するSAWデバイスが広く用いられてきた。STカット水晶SAWデバイスの1次温度係数は零であるものの、2次温度係数は約−0.034(ppm/℃)と比較的大きく、広温度範囲の使用では周波数変動量が大きくなるという問題があった。
【0003】
この問題を解決するものとして、Meirion Lewis,"Surface Skimming Bulk Wave,SSBW", IEEE Ultrasonics Symp. Proc.,pp.744〜752 (1977)や、特公昭62−016050号公報等に開示されたSAWデバイスがある。このSAWデバイスは、図18(a)に示すように回転Yカット水晶基板のカット角θを結晶軸Zより反時計方向に−50°回転(回転後の基板の軸をそれぞれX、Y’、Z’軸とする)し、X軸に対して垂直な方向(Z'軸方向)に伝搬するSH波を利用して構成したSH波型SAWデバイスである。なお、このカット角をオイラー角で表示すると(0°,θ+90°,90°)=(0°,40°,90°)と表示できる。図18(b)は、回転Yカット水晶基板81の主表面上にZ’軸に沿ってIDT電極82と、その両側にグレーティング反射器83a、83bとを配置して構成したSH波型SAW共振子である。このSH波型SAW共振子は、圧電基板81の表面直下を伝搬するSH波型表面波をIDT電極82によって励起し、その振動エネルギーを電極(82、83a、83b)直下に閉じ込めて、共振子を構成するものである。一般に、SH波型SAW共振子の周波数温度特性は、広温度範囲でみると3次曲線を呈し、良好な周波数温度特性が得られる。
【0004】
しかし、このSH波型表面波は本質的に基板内部を潜って進んでいく波(SSBW)であるため、STカット水晶板に励起されるレイリー波のように圧電基板表面に沿って伝搬するSAWデバイスと比較して、グレーティング反射器による弾性表面波の反射効率が悪く、小型で、且つ高いQ値を有するSH波型SAWデバイスを実現することが難しいという問題があった。
この問題を解決すべく、特公平01−034411号公報(特許文献2)では、図19に示すようにカット角θが−50°である回転Yカット水晶基板81上を、Z’軸方向に伝搬するSH波型表面波を用いたSAW共振子が開示されている。IDT電極84を800対±200対とし、グレーティング反射器を用いることなく、IDT電極14の電極指からの反射だけでSH波型表面波の振動エネルギーを閉じ込め、高Q化を図った所謂多対IDT電極型SAW共振子である。
【0005】
しかし、この多対IDT電極型SAW共振子は、グレーティング反射器を用いたSTカット水晶SAW共振子(レイリー波型)と比較してエネルギー閉じ込め効果が小さく、高いQ値を得るにはIDT電極対数が800対±200対と非常に多くの対数を必要とする。そのため、STカット水晶SAW共振子よりも基板が大きくなり、ひいてはデバイスサイズが大きくなって、最近の小型化の要求に応えることができないという問題があった。
【0006】
また、特許文献2に開示されているSAW共振子では、IDT電極によって励振されるSH波型表面波の電極周期(波長)をλとしたとき、電極膜厚を2%λ以上、好ましくは4%λ以下とすることによりQ値を高めることができると記されている。例えば周波数を200MHzとした場合、基準化電極膜厚H/λ(伝搬するSAWの波長をλとし、電極膜厚Hを波長λで基準化した値、単に電極膜厚ともいう)が4%λ付近でQ値が飽和し、STカット水晶SAW共振子と比較してもほぼ同等のQ値しか得られてない。この原因として、基準化電極膜厚が2%λ以上、4%λ以下の膜厚では、SH波型表面波が圧電基板表面に閉じ込められず、十分な反射効率が得られないため、Q値が大きくならないものと考えられる。
【0007】
SAWデバイスの高周波化と共にIDT電極の電極指間の間隔も益々狭まり、金属粉による短絡や耐圧による信頼性の低下等の問題が生じている。広帯域のSAWフィルタでは、IDT電極上にSiO等の絶縁膜を付着して、短絡を防止する手段が講じられているが、狭帯域のSAWフィルタではQ値が低下するという問題がある。また、電気機械結合係数kの比較的小さい圧電基板を用いたSAW共振子でも、同様にQ値が低下すという問題があった。
この問題を解決するものとして、特開平8−130433号公報に、図20に示すように電極材料としてアルミニウムを用いて形成したIDT電極の一方の櫛形電極93の表面を、陽極酸化し、絶縁膜(Al)を形成することが開示されている。つまり、電解液を入れた槽内にアルミニウム電極を形成した圧電基板を浸漬し、アルミニウム電極側を+、電解液を入れた槽内の電極側を−として、直流電源と接続し、陽極酸化処理を行う。電解液としてはエチレングリコールに四硼酸アンモニウム等を用い、印加する電圧は数Vから数十V程度で、十数分程度の通電でアルミニウムの表面に絶縁に十分な酸化膜(Al)が形成できると記されている。
【特許文献1】特公昭62−016050号公報
【特許文献2】特公平01−034411号公報
【特許文献3】特開平8−130433号公報
【非特許文献1】Meirion Lewis,"Surface Skimming Bulk Wave,SSBW", IEEE Ultrasonics Symp. Proc.,pp.744〜752 (1977)
【発明の開示】
【発明が解決しようとする課題】
【0008】
解決しようとする問題点は、SH波型SAWデバイスの電極上にSiO膜を付着して、金属粉による短絡防止、あるいは耐圧を改善しようとすれば、SH波型SAWデバイスのQ値が低下するという問題があった。
また、特許文献3には、弾性表面波装置のIDT電極の表面を陽極酸化することにより絶縁膜を形成し、金属粉による短絡防止、あるいは耐圧を改善したことが開示されているが、SH波型SAWデバイスについては何ら開示されおらず、陽極酸化によるSH波型SAWデバイスの諸特性への影響についても開示されてなく、SH波型SAWデバイスのパラメータをどうのように設定すべきか、手がかりが無いという問題があった。
本発明は、SH波型SAWデバイスの電極を陽極酸化処理する場合の諸特性、例えばQ値の変化、共振周波数の変化、エージング特性等を明らかにし、良好な特性を有するSH波型SAWデバイス提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するために本発明に係る弾性表面波デバイスの請求項1に記載の発明は、圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、 前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDT電極の波長で基準化した電極膜厚H/λを0.04<H/λ<0.12としたSH波型弾性表面波デバイスにおいて、前記IDT電極を陽極酸化したSH波型弾性表面波デバイスであることを特徴とする。
【0010】
請求項2の発明は、前記弾性表面波デバイスは、カット角θ及び電極膜厚H/λの関係が、−1.34082×10−4×θ3−2.34969×10−2×θ2−1.37506×θ−26.7895<H/λ<−1.02586×10−4×θ3 −1.73238×10−2×θ2−0.977607×θ−18.3420を満足していることを特徴とした請求項1に記載のSH波型弾性表面波デバイスである。
【0011】
請求項3の発明は、前記IDT電極を構成する電極指の電極指幅/(電極指幅+電極指間のスペース)をライン占有率mrとした時に、カット角θ及び電極膜厚とライン占有率の積(H/λ)×mrの関係が、−8.04489×10−5×θ3−1.40981×10−2×θ2−0.825038×θ−16.0737<(H/λ)×mr<−6.15517×10−5×θ3−1.03943×10−2×θ2−0.586564×θ−11.0052を満足していることを特徴とした請求項1に記載のSH波型弾性表面波デバイスである。
【0012】
請求項4の発明は、圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDT電極とを備え、励振波をSH波とした弾性表面波デバイスであって、前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDT電極の波長で基準化した電極膜厚H/λを0.05<H/λ<0.10とした弾性表面波デバイスにおいて、前記IDT電極を陽極酸化したSH波型弾性表面波デバイスであることを特徴とする。
【0013】
請求項5の発明は、前記弾性表面波デバイスは、カット角θ及び電極膜厚H/λの関係が、−1.44605×10−4×θ3−2.50690×10−2×θ2−1.45086×θ−27.9464<H/λ<−9.87591×10−5×θ3−1.70304×10−2×θ2−0.981173×θ−18.7946を満足していることを特徴とした請求項4に記載のSH波型弾性表面波デバイスである。
【0014】
請求項6の発明は、前記IDT電極を構成する電極指の電極指幅/(電極指幅+電極指間のスペース)をライン占有率mrとした時に、カット角θ及び電極膜厚とライン占有率の積(H/λ)×mrの関係が、−8.67632×10−5×θ3−1.50414×10−2×θ2−0.870514×θ−16.7678<(H/λ)×mr<−5.92554×10−5×θ3−1.02183×10−2×θ2−0.588704×θ−11.2768を満足していることを特徴とした請求項4に記載のSH波型弾性表面波デバイスである。
【0015】
請求項7の発明は、前記弾性表面波デバイスは、前記圧電基板上にIDT電極を少なくとも1個配置した1ポートの弾性表面波共振子であることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイスである。
【0016】
請求項8の発明は、前記弾性表面波デバイスは、前記圧電基板の弾性表面波の伝搬方向に沿ってIDT電極を少なくとも2個配置した2ポートの弾性表面波共振子であることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイスである。
【0017】
請求項9の発明は、前記弾性表面波デバイスは、前記圧電基板の弾性表面波の伝搬方向に対して複数個の弾性表面波共振子を平行に近接配置した横結合型多重モードフィルタであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイスである。
【0018】
請求項10の発明は、前記弾性表面波デバイスは、前記圧電基板の弾性表面波の伝搬方向に沿って複数個のIDT電極からなる2ポートの弾性表面波共振子を配置した縦結合型多重モードフィルタであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイスである。
【0019】
請求項11の発明は、前記弾性表面波デバイスは、前記圧電基板上に複数個のSH波型弾性表面波共振子を梯子状に接続したラダー型弾性表面波フィルタあることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイスである。
【0020】
請求項12の発明は、前記弾性表面波デバイスは、前記圧電基板上に弾性表面波を双方向に伝搬させるIDT電極を所定の間隔を空けて複数個配置したトランスバーサルSAWフィルタであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイスである。
【0021】
請求項13の発明は、前記弾性表面波デバイスは、前記圧電基板上に弾性表面波を一方向に伝搬させるIDT電極を少なくとも1つ配置したトランスバーサルSAWフィルタであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイスである。
【0022】
請求項14の発明は、前記弾性表面波デバイスは、弾性表面波センサであることを特徴とした請求項1乃至6のいずれかに記載のSH波型弾性表面波デバイスである。
【0023】
請求項15の発明は、前記弾性表面波デバイスは、IDT電極の両側にグレーティング反射器を有することを特徴とした請求項1乃至14のいずれかに記載のSH波型弾性表面波デバイスである。
【0024】
請求項16の発明は、請求項1乃至15のいずれかに記載のSH波型弾性表面波デバイスを用いたモジュール装置、又は発振回路である。
【発明の効果】
【0025】
本発明の請求項1、4に記載のSAWデバイスは、カット角θが−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−51.1°の範囲にある回転Yカット水晶基板を用い、SAWの伝搬方向が結晶X軸に対して90°±5°として励振されるSH波を用い、IDT電極やグレーティング反射器の電極材料をAlまたはAlを主とした合金にて構成し、波長で基準化した電極膜厚H/λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10とすることで、本来基板内部に潜って進んでいく波を基板表面に集中させてグレーティング反射器等により表面波の反射を効率良く利用できるようにし、更に前記電極膜を陽極酸化したので、小型でQ値が高く、且つ周波数エージング特性が優れたSH波型SAWデバイスを提供することができる。
【0026】
請求項2、5に記載の電極膜厚H/λとカット角θの条件を満足することにより、頂点温度Tp(℃)を実用的な温度範囲内に設定し、周波数エージング特性が優れたSH波型SAWデバイスとすることができる。
【0027】
請求項3、6に記載の電極膜厚とライン占有率の積(H/λ)×mrとカット角θの条件を満足することにより、頂点温度Tp(℃)を実用的な温度範囲内に設定し、周波数エージング特性が優れたSH波型SAWデバイスとすることができる。
【0028】
請求項7乃至14のいずれかに記載の種々の方式のSAWデバイスを用いれば、小型でQ値が高く、且つ周波数エージング特性が優れたSH波型SAWデバイスを提供することができる。
【0029】
請求項15に記載のSAWデバイスは、IDT電極の両側にグレーティング反射器を配置してSAWのエネルギーを前記IDT電極内に十分閉じ込めることができるので、小型でQ値が高く、周波数エージング特性が優れたSH波型SAWデバイスを提供することができる。
【0030】
請求項16に記載のモジュール装置、又は発振回路は、本発明のSH波型SAWデバイスを用いているので小型で高性能で、周波数エージング特性が優れたモジュール装置、又は発振回路を提供することができる。
【発明を実施するための最良の形態】
【0031】
本発明を説明する前に、本発明の元になった特願2004−310452号について説明する。SH波型表面波は、図1(a)に示すようにYカット水晶基板の回転角θを結晶軸Zより反時計方向に約−50°とし、結晶軸Xに対し90°±5°方向に伝搬するSH波型の表面波である。図1(b)はSH波型SAW共振子であって、水晶基板1の主面上にZ’軸方向に沿ってIDT電極2を配置すると共に、該IDT電極2の両側にグレーティング反射器3a、3bを配設してSH波型SAW共振子を構成する。IDT電極2は互いに間挿し合う複数の電極指を有する一対の櫛形電極より構成され、それぞれの櫛形電極よりリード電極を伸ばす。
IDT電極2、グレーティング反射器3a、3bの電極材料はアルミニウム(Al)又はAlを主成分とする合金とし、IDT電極2、グレーティング反射器3a、3bの電極膜厚HをSH波型表面波の波長λで基準化したH/λを基準化電極膜厚、IDT電極2を構成する電極指幅をL、電極指幅Lと電極指間のスペースSとの和を(L+S)としたとき、L/(L+S)をライン占有率mrとし、特に記述しないときは、mr=0.60を用いる。
【0032】
本発明においては、従来の欠点を鑑みて電極膜厚H/λを、従来の値より大きく設定することで、SH波型表面波を圧電基板表面に集中させて、グレーティング反射器によりSH波型表面波の反射を効率良く利用できるようにし、少ないIDT電極対数やグレーティング反射器本数でもSH波型表面波エネルギーをIDT電極内に閉じ込めるようにしてデバイスサイズの小型化を図った。
図2は、図1(b)に示したSH波型SAW共振子において、圧電基板1に−51°回転Yカット90°X伝搬水晶基板(オイラー角表示では(0°,39°,90°))を用い、共振周波数を315MHz、電極膜厚H/λを0.06、IDT電極2の対数を100対、グレーティング反射器3a、3bの本数を各々100本として構成したSH波型SAW共振子の周波数温度特性(実線)を示した図である。また、比較の為に、圧電基板の大きさを同一にしたSTカット水晶SAW共振子の周波数温度特性を破線で示し、重ね書きした。
【0033】
図3は本発明のSH波型SAW共振子における電極膜厚H/λとQ値の関係を示したものであり、共振子設計条件は前述と同等である。同図より、0.04<H/λ<0.12の範囲においてSTカット水晶SAW共振子のQ値(15,000)を上回る値が得られることが分かる。更に、0.05<H/λ<0.10の範囲に設定することにより20,000以上もの高いQ値が得られる。
【0034】
また、特公平01−034411号にある多対IDT型SAW共振子と本発明のSH波型SAW共振子のQ値を比較すると、特公平01−034411号で得られているQ値は共振周波数が207.561(MHz)における値であり、これを本実施例で適用している共振周波数315(MHz)に変換するとQ値は15,000程度となり、STカット水晶SAW共振子とほぼ同等である。また、共振子のサイズを比較すると、特公平01−034411号の多対IDT型SAW共振子は800±200対もの対数が必要なのに対し、本発明ではIDTとグレーティング反射器の両方で200対分の大きさで十分であるので格段に小型化できる。従って、電極膜厚を0.04<H/λ<0.12の範囲に設定し、グレーティング反射器を設けて効率良くSH波型表面波を反射することで、特公平01−034411号に開示されている多対IDT型SAW共振子よりも小型で且つQ値が高いSAWデバイスを実現できる。
【0035】
次に、図4は本発明のSH波型SAW共振子における電極膜厚H/λと2次温度係数の関係を示したものであり、共振子設計条件は前述と同等である。図4より高いQ値が得られる0.04<H/λ<0.12の範囲において、STカット水晶SAW共振子の2次温度係数−0.034(ppm/℃)よりも良好な値が得られた。以上より電極膜厚H/λを0.04<H/λ<0.12の範囲に設定することで、STカット水晶SAWデバイス及び特公平01−034411号に開示されているSAWデバイスよりも小型でQ値が高く、且つ周波数安定性に優れたSAWデバイスを提供できることが分かった。
【0036】
なお、これまでカット角θを−51°とした場合についてのみ示してきたが、本発明のSAW共振子においてはカット角θを変えても膜厚依存性は大きく変化せず、−51°から数度ずれたカット角においても電極膜厚を0.04<H/λ<0.12の範囲に設定することで、良好なQ値と2次温度係数が得られる。
【0037】
ところで、本発明のSH波型SAW共振子は、非常に広い温度範囲では3次的な温度特性となるが、特定の狭い温度範囲では2次特性と見なすことができ、その頂点温度Tpは電極膜厚やカット角によって変化する。従って、いくら周波数温度特性が優れていても頂点温度Tpが使用温度範囲外となってしまうと周波数安定性は著しく劣化してしまうので、実用的な使用温度範囲(−50℃〜+125℃)において優れた周波数安定性を実現するには、2次温度係数だけでなく頂点温度Tpについても詳細に検討する必要がある。
【0038】
図5(a)は、本発明のSH波型SAW共振子においてカット角θを−50.5°としたときの電極膜厚H/λと頂点温度Tpの関係を示している。図5(a)から明らかなように、電極膜厚H/λを大きくすると頂点温度Tpは下がり、電極膜厚H/λと頂点温度Tpの関係は次の近似式で表わされる。
Tp(H/λ)=−41825×(H/λ)2+2855.4×(H/λ)−26.42 ・・・(1)
また、−50°近傍のカット角においても切片を除けばおおよそ(1)式が適用できる。
【0039】
また、図5(b)は、本発明のSAW共振子において電極膜厚H/λを0.06とした時のカット角θと頂点温度Tpの関係を示している。図5(b)から明らかなように、カット角θの絶対値を小さくすると頂点温度Tpは下がり、カット角θと頂点温度Tpの関係は次の近似式で表わされる。
Tp(θ)=−43.5372×θ−2197.14 ・・・(2)
式(1)及び式(2)から電極膜厚H/λを0.04<H/λ<0.12とした時に頂点温度Tpを実用的な使用温度範囲(−50〜+125℃)に設定するには、カット角θを−59.9°≦θ≦−48.9°の範囲に設定すれば良いことが分かる。
【0040】
また、電極膜厚H/λとカット角θの双方を考慮する場合、頂点温度Tpは式(1)及び式(2)から次の近似式で表わされる。
Tp(H/λ,θ)=Tp(H/λ)+Tp(θ)=−41825×(H/λ)+2855.4×(H/λ)−43.5372×θ−2223.56 ・・・(3)
式(3)より、頂点温度Tpを使用温度範囲(−50〜+125℃)に設定するには、次式で表される範囲に電極膜厚H/λ及びカット角θを設定すれば良い。
0.9613≦−18.498×(H/λ)2+1.2629×(H/λ)−0.019255×θ≦1.0387 ・・・(4)
【0041】
このように、本発明ではカット角θが−59.9°≦θ≦−48.9°の範囲にある回転Yカット水晶基板を用い、SAWの伝搬方向がX軸に対してほぼ垂直方向として励振されるSH波を用い、IDT電極やグレーティング反射器の電極材料をAlまたはAlを主とした合金にて構成し、その電極膜厚H/λを0.04<H/λ<0.12とすることで、STカット水晶SAWデバイスより小型で、且つQ値が大きく、且つ周波数安定性の優れているSAWデバイスを実現できる。
【0042】
ここで、より最適な条件について検討すると、電極膜厚H/λは図3よりQ値として20,000以上が得られる0.05<H/λ<0.10の範囲に設定するのが好ましい。また、頂点温度Tpをより実用的な使用温度範囲(0°〜+70℃)に設定するためには、カット角θは−55.7°≦θ≦−50.2°の範囲に設定するのが好ましく、更には、式(3)より得られる次式の範囲にカット角θ及び電極膜厚H/λを設定するのが好ましい。
0.9845≦−18.518×(H/λ)+1.2643×(H/λ)−0.019277×θ≦1.0155 ・・・(5)
【0043】
以上では、図5(a)のカット角θを−50.5°とした時の電極膜厚H/λと頂点温度Tpの関係、及び図5(b)の電極膜厚H/λを0.06とした時のカット角θと頂点温度Tpの関係から、頂点温度Tpが実用的な使用温度範囲に入るような電極膜厚H/λとカット角θの関係式を導き出したが、更にカット角θの範囲を広げて実験を行ったところ、より詳細な条件を見出すことができたので以下説明する。
【0044】
図6は、前記SH波型SAW共振子において頂点温度Tp(℃)がTp=−50,0,+70,+125である時の水晶基板のカット角θと電極膜厚H/λの関係を示しており、各Tp特性の近似式は以下の通りである。
Tp=−50(℃):H/λ≒−1.02586×10−4×θ3 −1.73238×10−2×θ2−0.977607×θ−18.3420
Tp=0(℃):H/λ≒−9.87591×10−5×θ3−1.70304×10−2×θ2−0.981173×θ−18.7946
Tp=+70(℃):H/λ≒−1.44605×10−4×θ3−2.50690×10−2×θ2−1.45086×θ−27.9464
Tp=+125(℃):H/λ≒−1.34082×10−4×θ3−2.34969×10−2×θ2−1.37506×θ−26.7895
【0045】
図6から、頂点温度Tp(℃)を実用的な範囲である−50≦Tp≦+125に設定するには、Tp=−50℃及びTp=+125℃の曲線に囲まれた領域、即ち、−1.34082×10−4×θ3−2.34969×10−2×θ2−1.37506×θ−26.7895<H/λ<−1.02586×104×θ3 −1.73238×10−2×θ2−0.977607×θ−18.3420となるようにカット角θ及び電極膜厚H/λを設定すれば良いことが分かる。また、この時の電極膜厚H/λの範囲は、従来のSTカット水晶デバイスより優れた特性が得られる0.04<H/λ<0.12とし、カット角θの範囲は図6の点Aから点Bに示す範囲の−64.0<θ<−49.3とする必要がある。
【0046】
更に、より最適な条件について検討すると、頂点温度Tp(℃)はより実用的な使用温度範囲である0≦Tp≦+70に設定するのが望ましい。Tp(℃)を前述の範囲に設定するには、図6に示すTp=0℃及びTp=+70℃の曲線に囲まれた領域、即ち、−1.44605×10−4×θ3−2.50690×10−2×θ2−1.45086×θ−27.9464<H/λ<−9.87591×10−5×θ3−1.70304×10−2×θ2−0.981173×θ−18.7946となるようにカット角θ及び電極膜厚H/λを設定すれば良い。また、電極膜厚H/λはQ値が20,000以上得られる0.05<H/λ<0.10の範囲にするのが望ましく、電極膜厚を前述の範囲とし、頂点温度Tp(℃)を0≦Tp≦+70の範囲内に設定するには、カット角θを図6の点Cから点Dに示す範囲の−61.4<θ<−51.1に設定する必要がある。
【0047】
以上、詳細に検討した結果、カット角θが−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−51.1°の範囲にある回転Yカット水晶基板を用い、表面波の伝搬方向がX軸に対してほぼ垂直方向として励振されるSH波を用い、IDT電極やグレーティング反射器の電極材料をAlまたはAlを主とした合金にて構成し、その電極膜厚H/λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10とすることで、STカット水晶SAWデバイスよりQ値が大きく優れた温度特性が得られると共に、頂点温度Tpを実用的な使用温度範囲内に設定できることを見出した。
【0048】
ところで、これまでIDTのライン占有率mrを0.60と固定したときの例について説明してきたが、以下ではライン占有率を変数に含めた場合のTp特性について検討した。図7は、電極膜厚とライン占有率の積(H/λ)×mrと頂点温度Tpの関係を示している。なお、縦軸は頂点温度Tp(℃)を、横軸は電極膜厚とライン占有率との積(H/λ)×mrを示しており、このときの水晶基板のカット角θは−51.5°としている。図7に示すように、電極膜厚とライン占有率の積(H/λ)×mrの値を大きくする程、頂点温度Tpは下がることが分かる。
【0049】
次に、図8は頂点温度Tp(℃)がTp=−50,0,+70,+125である時の水晶基板のカット角θと電極膜厚とライン占有率の積(H/λ)×mrの関係を示している。なお、各Tp特性の近似式は以下の通りである。
Tp=−50(℃):H/λ×mr≒−6.15517×10−5×θ3−1.03943×10−2×θ2−0.586564×θ−11.0052
Tp=0(℃):H/λ×mr≒−5.92554×10−5×θ3−1.02183×10−2×θ2−0.588704×θ−11.2768
Tp=+70(℃):H/λ×mr≒−8.67632×10−5×θ3−1.50414×10−2×θ2−0.870514×θ−16.7678
Tp=+125(℃):H/λ×mr≒−8.04489×10−5×θ3−1.40981×10−2×θ2−0.825038×θ−16.0737
【0050】
図8から、頂点温度Tp(℃)を実用的な範囲である−50≦Tp≦+125に設定するには、Tp=−50℃及びTp=+125℃の曲線に囲まれた領域、即ち、−8.04489×10−5×θ3−1.40981×10−2×θ2−0.825038×θ−16.0737<H/λ×mr<−6.15517×10−5×θ3−1.03943×10−2×θ2−0.586564×θ−11.0052となるようにカット角θ及び電極膜厚とライン占有率の積H/λ×mrを設定すれば良いことが分かる。また、この時の電極膜厚H/λの範囲は従来のSTカット水晶デバイスより優れた特性が得られる0.04<H/λ<0.12とし、カット角θの範囲は−64.0<θ<−49.3とする必要がある。
【0051】
また、頂点温度Tp(℃)をより実用的な使用温度範囲である0≦Tp≦+70に設定するには、図8に示すTp=0℃及びTp=+70℃の曲線に囲まれた領域、即ち、−8.67632×10−5×θ3−1.50414×10−2×θ2−0.870514×θ−16.7678<H/λ×mr<−5.92554×10−5×θ3−1.02183×10−2×θ2−0.588704×θ−11.2768となるようにカット角θ及び電極膜厚とライン占有率の積(H/λ)×mrを設定すれば良い。また、この時の電極膜厚H/λはQ値が20,000以上得られる0.05<H/λ<0.10とするのが望ましく、電極膜厚を前述の範囲とし、且つ、頂点温度Tp(℃)を0≦Tp≦+70の範囲内に設定するには、カット角θは−61.4<θ<−51.1とするのが望ましい。
【0052】
これまで、図1に示すような1ポートのSAW共振子についてのみ言及してきたが、それ以外のSAWデバイスにおいても本発明を適用できる。以下、種々のSAWデバイスの構造について説明する。
図9は圧電基板11上にSAWの伝搬方向に沿ってIDT電極12、13を配置し、その両側にグレーティング反射器14a、14bを配置した2ポートSH波型SAW共振子を示しており、1ポートSH波型SAW共振子と同じく高いQ値を実現できる。
【0053】
図10は、共振子フィルタの1つの方式としてSAW共振子の音響結合を利用した2重モードSAW(DMS)フィルタを示しており、図10(a)は圧電基板21上にSAW共振子22を伝搬方向に対して平行に近接配置した横結合型DMSフィルタ、図10(b)は圧電基板31上にIDT32からなるSH波型SAW共振子を表面波の伝搬方向に沿って配置した2ポートの縦結合型DMSフィルタである。前記横結合型DMSフィルタは伝搬方向に対し垂直方向の音響結合を利用し、前記縦結合型DMSフィルタは伝搬方向に対し水平方向の音響結合を利用している。これらDMSフィルタは平坦な通過帯域と良好な帯域外抑圧度が得られる特徴がある。
なお、前記縦結合型DMSフィルタは、通過域近傍を高減衰にするためにSAW共振子を接続する場合がある。また、更に高次のモードを利用した多重モードSAWフィルタや、伝搬方向に対し垂直方向と水平方向の双方で音響結合させた多重モードSAWフィルタにも応用できる。
【0054】
図11は、共振子フィルタの別の方式として、圧電基板41上に複数の1ポートSAW共振子42を直列、並列、直列と梯子(ラダー)状に配置してフィルタを構成したラダー型SAWフィルタを示している。ラダー型SAWフィルタは前記DMSフィルタと比較して通過域近傍の減衰傾度が急峻なフィルタ特性が得られる。
【0055】
図12は、トランスバーサルSAWフィルタを示しており、同図(a)は圧電基板51上に表面波の伝搬方向に沿って入力用IDT電極52と出力用IDT電極53を所定の間隙をあけて配置したトランスバーサル型SAWフィルタである。なお、前記IDT電極52、53は双方向に表面波を伝搬させる。また、入出力端子間の直達波の影響を防ぐためにシールド電極54を設けたり、基板端面からの不要な反射波を抑圧するために圧電基板51の両端に吸音材55を塗布する場合がある。トランスバーサル型SAWフィルタは、振幅特性と位相特性とを別々に設計可能であり、帯域外抑圧度が高いためIF用フィルタとして多用されている。
【0056】
前記トランスバーサル型SAWフィルタにおいて、表面波は伝搬方向に沿って左右に等しく伝搬するためフィルタの挿入損失が大きくなるという問題がある。この問題を解決するものとして、図12(b)に示すように電極指配列や電極指幅を変化させることによりSAWの励振及び反射に重み付けを施して表面波の励振を一方向性にした所謂単相一方向性電極(Single Phase Uni-Directional Transducer:SPUDT)62、63を配置したトランスバーサル型SAWフィルタがある。表面波の励振が一方向性となるので低損失なフィルタ特性が得られる。また、他の構造として、IDTの励振電極間にグレーティング反射器を配置した所謂反射バンク型トランスバーサル型SAWフィルタ等がある。
【0057】
以上の種々のSAWデバイスにおいて、圧電基板に回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−51.1°の範囲に設定し、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板を用い、電極膜厚H/λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10の範囲に設定すれば、本発明と同様な効果が得られることは明らかである。
【0058】
また、上述のSAWデバイスにおいて、IDT電極やグレーティング反射器上にSiO等の保護膜やAlを陽極酸化した保護膜等を形成したり、Al電極の上部あるいは下部に密着層あるいは耐電力向上等の目的で別の金属薄膜を形成した場合においても、本発明と同様の効果を得られることは明らかである。また、センサ装置やモジュール装置、発振回路等に本発明のSH波型SAWデバイスが適用できることは言うまでもない。また、電圧制御SAW発振器(VCSO)等に本発明のSAWデバイスを用いれば、容量比γを小さくできるので周波数可変幅を大きくとれる。
【0059】
また、本発明のSAWデバイスは、SAWチップとパッケージをワイヤボンディングした構造以外でも良く、SAWチップの電極パッドとパッケージの端子とを金属バンプで接続したフリップチップボンディング(FCB)構造や、配線基板上にSAWチップをフリップチップボンディングしSAWチップの周囲を樹脂封止したCSP(Chip Size Package)構造、或いは、SAWチップ上に金属膜や樹脂層を形成することによりパッケージや配線基板を不要としたWLCSP(Wafer Level Chip Size Package)構造等にしても良い。更には、水晶デバイスを水晶又はガラス基板で挟んで積層封止したAQP(All Quartz Package)構造としても良い。前記AQP構造は、水晶又はガラス基板で挟んだだけの構造であるのでパッケージが不要で薄型化が可能であり、低融点ガラス封止や直接接合とすれば接着剤によるアウトガスが少なくなりエージング特性に優れた効果を奏する。
【0060】
以下、本発明を図示した実施の形態例に基づいて詳細に説明する。図13は本発明に係るSH波型SAW共振子の構成を示す平面図であって、水晶基板71のZ’軸方向に沿ってアルミニウム、又はアルミニウムを主成分とする合金のIDT電極72と、その両側にグレーティング反射器73a、73bとを配置して、SH波型SAW共振子を構成する。IDT電極72は、互いに間挿し合う複数の電極指を有する一対の櫛形電極より形成され、それぞれの櫛形電極よりリード電極を伸ばして二端子とする。さらに、電解液を入れた槽内に前記のSH波型SAW共振子を浸漬し、アルミニウム電極(IDT電極72、グレーティング反射器73a、73b)の陽極酸化処理を行う。ここで、アルミニウム電極の陽極酸化ついては、前述した特許文献3に示してあるように行い、アルミニウム電極の表面から厚さ約360Åが陽極酸化され、絶縁膜Alが形成されたことを、段差計を用いた測定によって確認した。
なお、水晶基板71のカット角θ、電極材料、IDT電極の基準化電極膜厚H/λ(λはSH波型表面波の波長)、ライン占有率mr(電極指幅Lとスペース幅Sとの和に対する電極指幅Lの比)等は、前述した特願2004−310452号に基づくものとする。
【0061】
図14(a)は、STカット水晶SAW共振子(図中にはSAW(ST)と表示)と、SH波型SAW共振子(図中にはSAW(SH波型)と表示)とをそれぞれ47個試作し、アルミニウムを主成分とするIDT電極及びグレーティング反射器を陽極酸化処理する前と後のQ値をそれぞれ測定した図である。なお、STカット水晶SAW共振子の基板のカット角は+31.0°、IDT電極の対数は120対、グレーティング反射器の本数はそれぞれ114本、電極膜厚H/λは0.03、ライン占有率mrは0.65である。そして、SH波型SAW共振子の諸定数については、基板のカット角は−52.0°、IDT電極72の対数は120対、グレーティング反射器73a、73bの本数はそれぞれ100本、電極膜厚H/λは0.06、ライン占有率mrは0.6とした場合のQ値である。
【0062】
STカット水晶SAW共振子の47個について、アルミニウム電極を陽極酸化前に測定したQ値の平均値は10,188、標準偏差は99であり、陽極酸化を行った後のQ値の平均値は8,195、標準偏差は457であった。同様に、SH波型SAW共振子の47個について、電極を陽極酸化する前のQ値の平均値は13,666、標準偏差は108であり、陽極酸化を行った後のQ値の平均値は11,488、標準偏差は116であった。STカット水晶SAW共振子では電極の陽極酸化前後におけるQ値は80%に低下したのに対し、SH波型SAW共振子では陽極酸化前後のQ値は84%に低下し、STカット水晶SAW共振子に比べQ値の低下が少ないことが判明した。また、陽極酸化によるQ値のばらつきも、SH波型SAW共振子はSTカット水晶SAW共振子のばらつきに比べ小さいことが分かった。
【0063】
図14(b)は、電極を陽極酸化処理する前と後の共振周波数の変化を測定したもので、個数はそれぞれ47個である。STカット水晶SAW共振子では、電極の陽極酸化前に測定した共振周波数の平均値は621.908MHz、標準偏差は0.039であり、陽極酸化を行った後の共振周波数の平均値は620.234MHz、標準偏差は0.052であった。同様に、SH波型SAW共振子では、電極を陽極酸化する前の共振周波数の平均値は621.921MHz、標準偏差は0.050であり、陽極酸化を行った後の共振周波数の平均値は621.372MHz、標準偏差は0.047であった。STカット水晶SAW共振子では電極の陽極酸化前後における共振周波数の差は−2691ppmであるのに対し、SH波型SAW共振子では陽極酸化前後の共振周波数の差は−883ppmと、STカット水晶SAW共振子に比べ共振周波数の低下が少ないことが判明した。また、陽極酸化による共振周波数のばらつきも、SH波型SAW共振子はSTカット水晶SAW共振子に比べ小さかった。
また、SH波型SAW共振子の陽極酸化による共振周波数変化が小さいことは、共振周波数の微調整に有利であることを示している。
【0064】
図15は、図14に示した諸定数(SH波型用)を用いて試作したSH波型SAW共振子をセラミックパッケージに密封し、温度85℃、湿度85%の恒温槽に放置し、経過時間と周波数変化Δf(ppm)との関係を測定した図である。IDT電極及びグレーティング反射器の陽極酸化処理は行っていない。
図16は、同様な定数を用いて試作したSH波型SAW共振子の電極面上にSiO膜を付着し、これをセラミックパッケージに密封し、温度85℃、湿度85%の恒温槽に放置し、経過時間と周波数変化Δf(ppm)との関係を測定した図である。絶縁膜を付着しないSH波型SAW共振子の1000H後の周波数エージングが、−数ppmであるのに対し、電極上にSiOの絶縁膜を付着したSH波型SAW共振子の1000H後の周波数エージングは、−40ppmとかなり劣化することが分かる。
【0065】
図17は、図14に示した諸定数(SH波型用)を用い、アルミニウム電極を陽極酸化処理して試作したSH波型SAW共振子を、セラミックパッケージに密封し、温度85℃、湿度85%の恒温槽に放置し、経過時間と周波数変化Δf(ppm)との関係を測定した図である。1000H後のエージング特性は、−数ppmであり、絶縁膜を付着しないSH波型SAW共振子のエージング特性とほぼ同程度のエージングであることが判明した。
【0066】
以上では、Yカット水晶基板の回転角θを結晶軸Zより反時計方向に約−50°とし、結晶軸Xに対し90°±5°方向に伝搬するSH波型表面波を用いたSH波型SAW共振子について説明したが、本発明はこれに限定するものではなく、水晶基板上にSH波型表面波の伝搬方向に沿って2つのIDT電極を近接して配置すると共に、該2つのIDT電極の両側にグレーティング反射器を配設して構成した1次−2次縦結合二重モードSAWフィルタ、3つのIDT電極を近接させ、その両側にグレーティング反射器を配置して構成した1次−3次縦結合二重モードSAWフィルタに適用できる。
また、水晶基板上にSH波型表面波の伝搬方向と直交して2つのIDT電極を近接して配置すると共に、該2つのIDT電極の両側にグレーティング反射器を配設して構成した1次−2次横結合二重モードSAWフィルタにも本発明は適用できる。さらに、水晶基板上にSH波型表面波の伝搬方向に沿ってIDT電極とその両側にグレーティング反射器を配して構成するSH波型SAW共振子を複数個形成し、これらを梯子型に接続して構成したラダー型SAWフィルタにも適用できる。
また、本発明は、水晶基板上にSH波型表面波の伝搬方向に沿って2つのIDT電極を所定の間隔を隔して配したトランスバーサル型SAWフィルタにも適用できる。
【図面の簡単な説明】
【0067】
【図1】(a)はSH波型SAW共振子の基板のカット角θと、電極の配置を示す図で、(b)はSH波型SAW共振子の構成を示す平面図である。ある。
【図2】SH波型SAW共振子の周波数温度特性と、STカット水晶SAW共振子の周波数温度特性とを重ね書きした図である。
【図3】SH波型SAW共振子の電極膜厚H/λとQ値との関係を示す図である。
【図4】SH波型SAW共振子の電極膜厚H/λと2次温度係数との関係を示す。
【図5】SH波型SAW共振子の電極膜厚H/λと頂点温度Tpの関係を(a)に、カット角θと頂点温度Tpの関係を(b)に示す。
【図6】SH波型SAW共振子の頂点温度Tp(℃)がTp=−50,0,+70,+125であるときのカット角θと電極膜厚H/λの関係を示す。
【図7】SH波型SAW共振子の電極膜厚とライン占有率の積(H/λ)×mrと頂点温度Tpの関係を示す。
【図8】SH波型SAW共振子の頂点温度Tp(℃)がTp=−50,0,+70,+125であるときのカット角θと電極膜厚とライン占有率の積H/λ×mrの関係を示す。
【図9】2ポートSH波型SAW共振子を説明する図である。
【図10】DMSフィルタを説明する図であり、(a)に横結合型DMSフィルタ、(b)に縦結合型DMSフィルタを示す。
【図11】ラダー型SAWフィルタを説明する図である。
【図12】トランスバーサルSAWフィルタを説明する図であり、(a)に双方向にSAWを励振させるIDTを配置したトランスバーサルSAWフィルタ、(b)に一方向にSAWを励振させるIDTを配置したトランスバーサルSAWフィルタを示す。
【図13】本発明に係るアルミニウムを主成分とする電極を陽極酸化したSH波型SAW共振子の構造を示した概略平面図図である。
【図14】(a)はSTカット水晶SAW共振子とSH波型SAW共振子との、陽極酸化前後のQ値の平均値、標準偏差、Q値の比を示した図、(b)は陽極酸化前後の周波数の平均値、標準偏差、周波数の差を示した図である。
【図15】SH波型SAW共振子に保護膜を付着しないもののエージング特性図である。
【図16】SH波型SAW共振子にSiO絶縁膜を付着したもののエージング特性図である。
【図17】電極を陽極酸化処理したSH波型SAW共振子のエージング特性である。
【図18】(a)は従来のSH波型SAW共振子の基板のカット角θと、電極の配置を示す図で、(b)はSH波型SAW共振子の構成を示す平面図である。ある。
【図19】多対IDT電極型SAW共振子の構成を示す平面図である。
【図20】IDT電極の一方の櫛形電極を陽極酸化した状態を示す平面図である。
【符号の説明】
【0068】
1、11、21、31、41、71 圧電基板
2、12、13、22、32、42、52、53、62、63、72 IDT電極
3a、3b、14a、14b、73a、73b グレーティング反射器
54 シールド電極
55 吸音材
λ SH波型弾性表面波の波長





 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013