米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 電気素子 -> 東京エレクトロン株式会社

発明の名称 絶縁膜の形成方法及び絶縁膜の形成装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−27792(P2007−27792A)
公開日 平成19年2月1日(2007.2.1)
出願番号 特願2006−281724(P2006−281724)
出願日 平成18年10月16日(2006.10.16)
代理人 【識別番号】100095407
【弁理士】
【氏名又は名称】木村 満
発明者 柏木 勇作 / 香川 恵永 / 川村 剛平 / 鄭 基市
要約 課題
均一に空孔を形成できる絶縁膜の形成方法及び絶縁膜の形成装置を提供する。

解決手段
1,3,5−トリメチル1,3,5−トリビニルシクロトリシロキサン(V3D3)とイソプロピルアルコール(IPA)とをチャンバ12内に供給し、プラズマによりこれらを励起してこれらの化合物の分子状の活性種を発生させる。これらの活性種を基板の表面近傍で反応させ、例えば、IPA分子を含む厚さ50nmの絶縁膜の薄膜を形成する。さらに、アンモニアガスを用いたプラズマ処理により、薄膜中に含まれるIPA分子を選択的に脱離させて、厚さ方向に均一な空孔を形成する。この成膜工程と空孔形成工程とを複数回繰り返して、所定厚さで、且つ、均一に空孔が形成された絶縁膜を得ることができる。
特許請求の範囲
【請求項1】
チャンバー内に配置されたサセプタに基板を載置する工程と、
前記チャンバー内に載置された基板に、シャワーヘッドを介して、絶縁膜形成原料を供給する工程と、
前記サセプタに第1の周波数の高周波電力を印加する工程と、
前記シャワーヘッドに第2の周波数の高周波電力を印加する工程と、
前記第1の周波数の高周波電力の印加及び前記第2の周波数の高周波電力の印加により、前記絶縁膜形成原料のプラズマを生成する工程と、
前記プラズマにより基板上に絶縁膜を形成する工程と、
を備える、ことを特徴とする絶縁膜の形成方法。
【請求項2】
前記第1の周波数は、0.1〜5MHzである、ことを特徴とする請求項1に記載の絶縁膜の形成方法。
【請求項3】
前記第2の周波数は、13〜150MHzである、ことを特徴とする請求項1または2に記載の絶縁膜の形成方法。
【請求項4】
チャンバーと、
前記チャンバー内に基板を載置するサセプタと、
前記チャンバー内に絶縁膜形成原料を供給する絶縁膜形成原料供給手段と、
前記チャンバー内に供給された絶縁膜形成原料を基板に均一に導入する複数のガス穴を有するシャワーヘッドと、
前記サセプタに第1の周波数の高周波電力を印加する第1の高周波電源と、
前記シャワーヘッドに第2の周波数の高周波電力を印加する第2の高周波電源と、
成膜装置の各部を制御する制御手段と、
を備え、
前記制御手段は、
前記絶縁膜形成原料供給手段を制御して前記シャワーヘッドを介して前記基板に絶縁膜形成原料を供給し、前記第1の高周波電源を制御して前記サセプタに第1の周波数の高周波電力を印加しつつ、前記第2の高周波電源を制御して前記シャワーヘッドに第2の周波数の高周波電力を印加して、前記チャンバー内に前記絶縁膜形成原料のプラズマを生成して前記基板上に絶縁膜を形成する、
ことを特徴とする絶縁膜の形成装置。
【請求項5】
前記第1の周波数は、0.1〜5MHzである、ことを特徴とする請求項4に記載の絶縁膜の形成装置。
【請求項6】
前記第2の周波数は、13〜150MHzである、ことを特徴とする請求項4または5に記載の絶縁膜の形成装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は、絶縁膜の形成方法及びその装置に関し、特に、空孔を有する低誘電率の絶縁膜の形成方法及びその装置に関する。
【背景技術】
【0002】
近時、半導体装置の高速化、小型化の要請を背景として、半導体素子の多層化及び配線の微細化が進められている。例えば、0.15μm以下の設計ルールに対しては、多層構造を有する配線の信号伝播速度が遅延し、所望の高速化が図れないという問題がある。この微細化に伴う配線遅延の増大を防ぐためには、配線の層間絶縁膜の低誘電率化が有効である。
【0003】
そこで、従来、種々の絶縁膜形成材料が検討されてきた。なかでも、膜中に空孔が存在すると、膜としての誘電率が材料固有の誘電率より低下するという性質を利用した、空孔率の高い絶縁膜が注目されている。
【0004】
このような絶縁膜の形成方法として、例えば、CVD(Chemical Vapor Deposition)等により、低沸点成分若しくは分解し易い分子群である炭化水素化合物等を含む絶縁膜を成膜する。次いで後処理(アニール処理)により、低沸点成分等を除去し、絶縁膜に空孔を形成する方法が検討されている。
【発明の開示】
【発明が解決しようとする課題】
【0005】
この後処理では、例えば、絶縁膜が形成された基板を高温に加熱する熱処理を行う。しかし、実用的な絶縁膜の厚さは、約500nm〜約700nm(約5000Å〜約7000Å)であるので、厚さ方向に均一に処理することが難しい。そのため、厚さ方向の温度勾配により、絶縁膜の表面から内部にかけて空孔のサイズや膜の密度に偏りが発生し、均一な膜特性を有する絶縁膜が形成できないという問題があった。また、十分な低誘電率化が図れないという欠点もあった。
【0006】
本発明は、上記実状に鑑みてなされたもので、厚さ方向に均一に空孔を形成できる絶縁膜の形成方法及び絶縁膜の形成装置を提供することを目的とする。
また、本発明は、空孔率の高い膜を形成できる絶縁膜の形成方法及び絶縁膜の形成装置を提供することを他の目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本発明の第1の観点に係る絶縁膜の形成方法は、
チャンバー内に配置されたサセプタに基板を載置する工程と、
前記チャンバー内に載置された基板に、シャワーヘッドを介して、絶縁膜形成原料を供給する工程と、
前記サセプタに第1の周波数の高周波電力を印加する工程と、
前記シャワーヘッドに第2の周波数の高周波電力を印加する工程と、
前記第1の周波数の高周波電力の印加及び前記第2の周波数の高周波電力の印加により、前記絶縁膜形成原料のプラズマを生成する工程と、
前記プラズマにより基板上に絶縁膜を形成する工程と、
を備える、ことを特徴とする。
【0008】
前記第1の周波数は、例えば、0.1〜5MHzである。
前記第2の周波数は、例えば、13〜150MHzである。
【0009】
上記目的を達成するため、本発明の第2の観点に係る絶縁膜の形成装置は、
チャンバーと、
前記チャンバー内に基板を載置するサセプタと、
前記チャンバー内に絶縁膜形成原料を供給する絶縁膜形成原料供給手段と、
前記チャンバー内に供給された絶縁膜形成原料を基板に均一に導入する複数のガス穴を有するシャワーヘッドと、
前記サセプタに第1の周波数の高周波電力を印加する第1の高周波電源と、
前記シャワーヘッドに第2の周波数の高周波電力を印加する第2の高周波電源と、
成膜装置の各部を制御する制御手段と、
を備え、
前記制御手段は、
前記絶縁膜形成原料供給手段を制御して前記シャワーヘッドを介して前記基板に絶縁膜形成原料を供給し、前記第1の高周波電源を制御して前記サセプタに第1の周波数の高周波電力を印加しつつ、前記第2の高周波電源を制御して前記シャワーヘッドに第2の周波数の高周波電力を印加して、前記チャンバー内に前記絶縁膜形成原料のプラズマを生成して前記基板上に絶縁膜を形成する、
ことを特徴とする。
【0010】
前記第1の周波数は、例えば、0.1〜5MHzである。
前記第2の周波数は、例えば、13〜150MHzである。
【発明の効果】
【0011】
本発明によれば、厚さ方向に均一に空孔を形成できる絶縁膜の形成方法及び絶縁膜の形成装置を提供することができる。さらに、本発明によれば、空孔率の高い膜を形成できる絶縁膜の形成方法及び絶縁膜の形成装置を提供することができる。
【発明を実施するための最良の形態】
【0012】
本発明の実施の形態にかかる絶縁膜の形成方法について、以下図面を参照して説明する。本実施の形態の絶縁膜の形成方法によれば、シリコン(Si)と酸素素(O)と炭素(C)とを主成分として構成され、厚さ方向に均一な空孔を有する絶縁膜(以下、SiOC系膜)が形成される。
【0013】
図1に、本実施の形態の絶縁膜の形成方法を実施するための装置の構成例を示す。
本実施の形態の処理装置は、上下平行に対向する電極を有する、いわゆる平行平板型プラズマCVD装置として構成され、半導体ウェハ(以下、ウェハW)の表面にSiOC系膜をCVDにより成膜する。
【0014】
図1を参照して、処理装置11は、円筒形状のチャンバ12を有する。チャンバ12は、アルマイト処理(陽極酸化処理)されたアルミニウム等の導電性材料からなる。また、チャンバ12は接地されている。
【0015】
チャンバ12の底部には排気口13が設けられている。排気口13には、ターボ分子ポンプなどの真空ポンプを備える排気装置14が接続されている。排気装置14は、チャンバ12内を所定の圧力まで排気する。また、チャンバ12の側壁にはゲートバルブ15が設けられている。ゲートバルブ15を開放した状態で、チャンバ12の外部との間でのウェハWの搬入出がなされる。
【0016】
除害装置36は、排気装置14により排出されたチャンバ12内の雰囲気ガスを無害化するための装置である。除害装置36は、所定の触媒により雰囲気ガスを燃焼あるいは熱分解して、無害な物質に変換する。
【0017】
チャンバ12の底部には略円柱状のサセプタ支持台16が設けられている。サセプタ支持台16の上には、ウェハWの載置台としてのサセプタ17が設けられている。サセプタ17は下部電極としての機能を有し、サセプタ支持台16とサセプタ17との間は、セラミックなどの絶縁体18により絶縁されている。
【0018】
サセプタ支持台16の内部には、下部冷媒流路19が設けられている。下部冷媒流路19には冷媒が循環している。下部冷媒流路19を冷媒が循環することにより、サセプタ17そしてウエハWは所望の温度に制御される。
【0019】
サセプタ支持台16には、半導体ウエハWの受け渡しをするためのリフトピン20が設けられており、リフトピン20はシリンダ(図示せず)により昇降可能となっている。また、サセプタ17は、その上中央部が凸状の円板状に成形され、その上にウエハWと略同形の図示しない静電チャックが設けられている。サセプタ17上に載置されたウェハWは、直流電圧が印加されることにより静電吸着される。
【0020】
下部電極として機能するサセプタ17には、第1の高周波電源21が第1の整合器22を介して接続されている。第1の高周波電源21は0.1〜5MHzの範囲の周波数を有している。第1の高周波電源21に上記範囲の周波数を印加することにより、被処理体に対するダメージを低減させる等の効果が得られる。
【0021】
サセプタ17の上方には、このサセプタ17と平行に対向してシャワーヘッド23が設けられている。シャワーヘッド23のサセプタ17に対向する面には、多数のガス穴24を有する、アルミニウム等からなる電極板25が備えられている。また、シャワーヘッド23は、電極支持体26により、チャンバ12の天井部分に支持されている。シャワーヘッド23の内部には、上部冷媒流路27が設けられている。上部冷媒流路27には冷媒が循環し、シャワーヘッド23は所望の温度に制御される。
【0022】
さらに、シャワーヘッド23にはガス導入管28が接続されている。原料導入管28は、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン(V3D3)ガス源29と、イソプロピルアルコール(IPA)ガス源30と、アルゴン(Ar)ガス源31と、に、図示しないマスフローコントローラ、バルブ等を介して接続されている。V3D3とIPAとは常温ではともに液体であるので、図示しない加熱部により気化した状態で、各ガス源29、30に供給される。また、空孔を形成するための処理ガスであるNHガス源35も、ガス導入管28に、図示しないマスフローコントローラ、バルブ等を介して接続されている。
【0023】
各ガス源29〜31、35からの原料ガス及び処理ガスは、ガス導入管28を介してシャワーヘッド23の内部に形成された中空部(図示せず)に混合されて供給される。シャワーヘッド23内に供給されたガスは、中空部で拡散され、シャワーヘッド23のガス穴24からウェハWの表面に供給される。
【0024】
シャワーヘッド23には、第2の高周波電源32が接続されており、その給電線には第2の整合器33が介在されている。第2の高周波電源32は、13〜150MHzの範囲の周波数を有しており、このように高い周波数を印加することにより、シャワーヘッド23は上部電極として機能し、チャンバ12内に好ましい解離状態でかつ高密度のプラズマを形成する。
【0025】
制御部34は、ウェハWへの成膜処理を含む、処理装置11全体の動作を制御する。制御部34は、MPU(Micro Processing Unit)、メモリ等を備えるマイコン制御装置である。制御部34は、装置各部を所定の処理シーケンスに従って制御するためのプログラムをメモリに記憶し、このプログラムにしたがって、装置各部に制御信号を送信する。
【0026】
以下、上記処理装置11を用いた絶縁膜の形成方法について説明する。図2に、本実施の形態の製造方法のタイミング図を示す。なお、図2に示すタイミング図は一例であり、同様の効果を奏する構成であればいかなるものであってもよい。
【0027】
まず、未処理のウェハWが、図示しない搬送アームに保持されて開放状態のゲートバルブ15を介してチャンバ12内に搬入される。搬送アームは、ウェハWを上昇位置にあるリフトピン20に受け渡し、チャンバ12内から退出する。その後、ウェハWはリフトピン20の下降により、サセプタ17上に載置される。ウェハWは、静電チャックによりサセプタ17上に固定される。
【0028】
次いで、制御部34は、排気装置14により、チャンバ12内を、例えば、50Pa(3.8×10−1Torr)とする。また同時に、制御部34は、サセプタ17の温度を、400℃以下の温度、例えば、300℃に設定する。
【0029】
その後、各ガス源29〜31から、V3D3、IPAおよびArガスが、所定の流量でチャンバ12内に供給される。処理ガスの混合ガスは、シャワーヘッド23のガス穴24からウエハWに向けて均一に吐出される。V3D3、IPAおよびArの供給は、例えば、V3D3/IPA/Ar=30/10/100の流量比(各sccm)で行われる。
【0030】
その後、第2の高周波電源32から、例えば、27MHzの高周波電力が上部電極(シャワーヘッド23)に印加される。これにより、上部電極と下部電極(サセプタ17)との間に高周波電界が生じ、混合ガスのプラズマが生成する。他方、第1の高周波電源21からは、例えば、2MHzの高周波電力が下部電極に印加される。これにより、生成したプラズマ中の荷電粒子、特に、V3D3及びIPAの分子状の活性種が、ウェハWの表面近傍に引き寄せられて反応し、IPA分子を含むSiOC系膜がウェハWの表面に形成される。
【0031】
ここで、制御部34は、上下電極23、17への高周波電力の印加を数秒乃至数十秒間行い、ウェハW表面に、例えば、50nm(500Å)の厚さのSiOC系の膜を形成する。高周波電力の印加開始から所定時間後、制御部34は、上部電極および下部電極への高周波電力の印加を停止するとともに、V3D3ガス源29およびIPAガス源30からのV3D3およびIPAの導入を停止する。以上で成膜工程は一旦終了する。このとき、Arが、チャンバ12内に流されている。
【0032】
制御部34は、Arガスによるチャンバ12内のパージを所定時間行い、チャンバ12内から、残存したV3D3およびIPAを除去する。このとき、制御部34は、サセプタ17の温度を、450℃以下の温度、例えば、350℃に設定し、また、圧力を、例えば、1.3×10−3Pa(1×10−5Torr)とする。
【0033】
その後、各ガス源35、31から、NHガス及びArガスが、所定の流量でチャンバ12内に供給される。NHガスは、Arガスと共にシャワーヘッド23のガス穴24からウエハWに向けて均一に吐出される。NHおよびArの供給は、例えば、NH/Ar=30/100の流量比(各sccm)で行われる。
【0034】
次いで、第2の高周波電源32から、例えば、40MHzの高周波電力が上部電極(シャワーヘッド23)に印加される。これにより、上部電極と下部電極(サセプタ17)との間に高周波電界が生じ、NHガスのプラズマが生成する。他方、第1の高周波電源21からは、例えば、2MHzの高周波電力が下部電極に印加される。これにより、プラズマ中の活性種がサセプタ17側に引き寄せられ、ウェハW表面近傍のプラズマ密度が高められる。このような上下の電極23、17への高周波電力の印加により、NHガスのプラズマが生成され、このプラズマによるウェハWの表面での化学反応により、SiOC系膜からIPA分子が除去される。制御部34は、所定の空孔率の膜を形成するように、このプラズマ処理を所定時間行う。
【0035】
ここで、プラズマ化されたNHガスの絶縁膜への厚さ方向の侵入(拡散)深さは、約100nm(約1000Å)程度である。一方、成膜工程で形成された絶縁膜の厚さは、50nm(500Å)である。そのため、NHガスの活性種は、絶縁膜の表面から内部まで十分に拡散して、シロキサン構造とIPA分子との結合を解離させることができるので、絶縁膜には厚さ方向に均一に空孔が形成される。勿論、IPA分子に限らず、その分解生成物も除去される。
【0036】
排気装置14は、脱離したIPA分子等を、処理ガスと共に排気ガスとしてチャンバ12外に排出する。
【0037】
所定時間後、制御部34は、チャンバ12内にArを流しつつ、サセプタ17の温度を成膜時の温度(300℃)まで低下させ、また、圧力を50Pa(3.8×10−1Torr)とする。
【0038】
その後、制御部34は、再び、上述したSiOC系膜の薄膜の成膜を開始する。すなわち、制御部34は、ガス源からのV3D3およびIPAの供給を開始する。次いで、上部電極および下部電極に高周波電力を印加する。成膜処理を上記と同様に所定時間行うことにより、既に成膜された薄膜上に、新たに、50nmの厚さのSiOC系膜の薄膜が成膜される。
【0039】
成膜処理の後、制御部34は、上部電極および下部電極への高周波電力の印加を停止し、V3D3およびIPAの供給を停止する。次いで、サセプタ17の温度を350℃に設定し、チャンバ12内の圧力を1.3×10−3Pa(1×10−5Torr)とするとともに、チャンバ12内をArガスによりパージする。
【0040】
制御部34は、再び、処理ガスであるNHをチャンバ12内に導入し、サセプタ17を350℃に所定時間保持し、プラズマアニール処理を行う。これにより、SiOC系膜、特に、新たに形成した膜中のIPA分子が脱離する。このようにして、新たに形成されたSiOC系膜に対する空孔形成処理が行われる。
【0041】
その後、制御部34はサセプタ17の温度を300℃まで低下させ、チャンバ12内の圧力を50Pa(3.8×10−1Torr)とする。制御部34は、このようにして、成膜処理と、プラズマアニール処理と、各処理間のパージと、を繰り返す。制御部34は、薄膜が積層して形成されるSiOC系膜全体の厚さが、所定の厚さ、例えば、500nm(5000Å)に達する回数、上記各処理を繰り返す。
【0042】
所定回数だけ上記の各処理を繰り返した後、制御部34は、サセプタ17の加熱を停止するとともに、チャンバ12内の圧力をチャンバ12外の圧力程度まで戻す。その後、静電チャックは解除され、リフトピン20が上昇する。次いで、ゲートバルブ15が開放されて、搬送アームがチャンバ12内に侵入する。搬送アームによりウェハWがチャンバ12外に搬出される。
【0043】
以上説明したように、本発明によれば、まず、プラズマCVDによりV3D3及びIPAを出発物質として、IPA分子をシロキサン構造中に含む、例えば50nm厚さのSiOC系の絶縁膜の薄膜を形成する。次いで、NHプラズマによりこの薄膜にプラズマアニール処理を行う。このとき、プラズマ中の活性種は、この薄膜中の表面から内部に十分に侵入して、シロキサン構造中に取り込まれているIPA分子を脱離させ得る。そのため、薄膜にはその厚さ方向に均一に空孔が形成される。このように、薄膜の成膜処理と空孔形成処理とを交互に繰り返して行うことにより、所望の厚さで、且つ、厚さ方向に均一に空孔が形成された絶縁膜を形成することができる。これにより、より誘電率の低い膜を形成できる。
【0044】
本発明は、上記の実施の形態に限定されず、種々の変形及び応用が可能である。
【0045】
上記実施の形態では、絶縁膜としてSiOC系膜を、V3D3とIPAを原料化合物として形成した。本発明の絶縁膜は、SiOC系膜に限定されず、SiC、SiN、SiCN、SiOF、またはSiOx等の構造を有する絶縁膜であっても良い。また、SiOC系膜を形成する原料としては、V3D3の代わりに、オクタメチルシクロテトラシロキサン(D4)、ヘキサエチルシクロトリシロキサン、ヘキサメチルシクロトリシロキサン、オクタフェニルシクロトリシロキサン、テトラエチルシクロテトラシロキサン等の環状シロキサン化合物を使用することができるが、これらに限定されない。
【0046】
また、シリコン化合物と反応して絶縁膜を形成する有機化合物としてIPAを使用したが、極性基であるOH基を有する直鎖アルキルアルコール類、環状アルキルアルコール類、芳香族アルコール類、及び各種ケトン類、各種エーテル類等これらの誘導体等も使用できる。さらに、絶縁膜を形成した後の空孔形成処理で、NHのような処理ガスにより、絶縁膜を構成する分子構造から容易に引き抜かれるようなものであればよく、例えば、分子内にOH基、COOH基等の各種極性基を有するような化合物も含まれるが、これらに限定されない。
【0047】
上記実施の形態では、空孔形成工程で形成した絶縁膜の薄膜に空孔を形成するための処理ガスとして、NHを使用したが、これ以外にH、N、O、He等の還元性並びに酸化性ガスや不活性ガスを使用することができる。成膜工程で絶縁膜中に十分に侵入可能であり、絶縁膜中に存在する有機分子を効果的に脱離させることができるガスであれば良い。さらに、SiH等のシラン系ガス、CH等の炭化水素系ガス、C等の弗化炭素系ガス等の反応性ガスを使用することもできる。これらのガスを単独で使用してもよいし、上記の還元性ガス若しくは酸化性ガスや不活性ガスと混合して、使用することもできる。この場合には、空孔の形成と共に薄膜の改質を行うことができる。
【0048】
また、成膜工程において、厚さ50nmのSiOC系膜の薄膜を形成したが、薄膜の厚さは、これに限定されない。後処理である、プラズマアニール工程において使用する処理ガスの活性種が均一に薄膜中に浸透して、その厚さ方向に均一に空孔を形成できる厚さであればよい。薄膜の厚さは、好ましくは、1原子層以上であって、用いる処理ガスが浸透可能な範囲である。例えば、処理ガスとしてHを使用する場合には、Hの活性種の侵入深さは、約100nm(約1000Å)であるので、50〜100nmの厚さに薄膜を形成すればよい。同様に、処理ガスとしてOを使用する場合には、Oの活性種の侵入深さは、約5〜約10nm(約50Å〜約100Å)であるので、約2.5nm〜約10nmの厚さの薄膜を形成すればよい。このように、使用する処理ガスの活性種の侵入深さにより、厚さ方向に均一に空孔を形成できる薄膜の厚さを設定し得る。
【0049】
上記実施の形態では、成膜処理には平行平板型のプラズマCVD装置を用いた。しかし、これに限らず、ECR型、ICP型、TCP型、ヘリコン型等のプラズマ処理を用いてもよい。また、プラズマCVDに限らず、熱CVDあるいは光CVDを用いてもよい。
【0050】
上記実施の形態では、IPA分子を脱離させる空孔形成処理は、処理ガスとしてNHを使用して、プラズマアニール処理により行った。しかし、IPA分子を脱離させる方法はこれに限られない。例えば、減圧下での加熱(アニール処理)により成膜工程で導入したIPA分子とV3D3分子との結合を選択的に解離させることにより行うこともできる。さらに、電子線等の励起源を用いて前述したH、O、CH、SiF等の処理ガスの熱ラジカルを発生させ、この熱ラジカルにより、絶縁膜中のIPA分子等を引き抜いて脱離させることもできる。
【0051】
上記実施の形態では、所定周波数の高周波電力を上部電極及び下部電極に印加すると説明したが、印加する高周波電力の周波数はこれに限定されない。
【0052】
空孔形成処理は、膜形成処理と同一のチャンバ12を使用して行なわれたが、例えば、上述したような処理が可能な別のチャンバを用いて、膜形成処理とシーケンシャルに処理装置11により実行されるようにしても良い。例えば、図3(a)、(b)にそれぞれ示すように、いわゆるin−situとex−situ型の処理装置を使用することができる。
【0053】
ここで、上記in−situ型の処理装置の動作について図3(a)を参照して説明する。まず、トランスファーモジュール43内に配置された搬送装置44が、ロードロック46内の図示しないウェハカセットから未処理の半導体ウェハWを、搬送アーム45により取り出し、成膜チャンバ41内に搬入する。成膜チャンバ41内における絶縁膜の形成後、搬送装置44は搬送アーム45により半導体ウェハWを成膜チャンバ41から取り出し、後処理チャンバ42内まで搬送する。後処理チャンバ42における、プラズマアニール又は熱処理によるアニール処理後、搬送装置44は半導体ウェハWを後処理チャンバ42から取り出し、再度、成膜チャンバ41内に搬送する。以下、所定厚さの絶縁膜が形成されるまで、搬送装置44は、成膜チャンバ41と後処理チャンバ42との間を、交互に繰り返し半導体ウェハWを搬送する。最後に、搬送装置44は、処理済みの半導体ウェハWを後処理チャンバ42から取り出し、ロードロック46内の図示しないウェハカセットに収容する。
【0054】
上記実施の形態では、成膜工程においては、プラズマCVD法を使用したが、成膜方法はこれに限定されず、所定厚さの均一な薄膜が形成できる方法であればよい。例えば、膜形成材料を基板に塗布することにより薄膜を形成することもできる。即ち、BCB膜、SOG膜、並びにHSQ、MSQ等の膜に適用可能である。
【0055】
上記実施の形態では、被処理体として半導体ウェハW上に絶縁膜を形成すると説明したが、絶縁膜を形成する被処理体としては、半導体ウェハに限定されず、例えば、液晶表示基板の処理に適用してもよい。
【図面の簡単な説明】
【0056】
【図1】本発明の実施の形態にかかる処理装置の構成を示す図である。
【図2】本発明の実施の形態にかかる絶縁膜の形成方法のタイミング図である。
【図3】本発明の実施の形態にかかる絶縁膜の形成装置の変形例を示す模式図である。
【符号の説明】
【0057】
11 処理装置
12 チャンバ
13 排気口
14 排気装置
15 ゲートバルブ
16 サセプタ支持台
17 サセプタ
18 絶縁体
19 下部冷媒流路
20 リフトピン
21 第1の高周波電源
22 第1の整合器
23 シャワーヘッド
24 ガス穴
25 電極板
26 電極支持体
27 上部冷媒流路
28 ガス導入管
29 V3D3ガス源
30 IPAガス源
31 Arガス源
32 第2の高周波電源
33 第2の整合器
34 制御部
35 NHガス源
58 除害装置




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013