米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 電気素子 -> 株式会社東芝

発明の名称 半導体レーザ装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−5720(P2007−5720A)
公開日 平成19年1月11日(2007.1.11)
出願番号 特願2005−187034(P2005−187034)
出願日 平成17年6月27日(2005.6.27)
代理人 【識別番号】100108062
【弁理士】
【氏名又は名称】日向寺 雅彦
発明者 田中 明
要約 課題
動作電流が低減され、高次横モードが抑制された半導体レーザ装置を提供する。

解決手段
基板と、前記基板上に設けられた第1導電型を有する第1クラッド層と、前記第1クラッド層上に設けられた活性層と、前記活性層上に設けられた第2導電型を有するオーバーフロー防止層と、前記オーバーフロー防止層上に設けられた第2導電型を有する第2クラッド層と、を備え、前記第2クラッド層はリッジ部と非リッジ部とを有し、前記リッジ部に隣接する非リッジ部は厚みが0.1マイクロメータ以下の領域を含み、前記非リッジ部の上面と前記リッジ部の側面には、絶縁膜と前記活性層からの放射光に対する光吸収膜とが設けられていることを特徴とした半導体レーザ装置が提供される。
特許請求の範囲
【請求項1】
基板と、
前記基板上に設けられた第1導電型を有する第1クラッド層と、
前記第1クラッド層上に設けられた活性層と、
前記活性層上に設けられた第2導電型を有するオーバーフロー防止層と、
前記オーバーフロー防止層上に設けられた第2導電型を有する第2クラッド層と、
を備え、
前記第2クラッド層はリッジ部と非リッジ部とを有し、前記リッジ部に隣接する非リッジ部は厚みが0.1マイクロメータ以下の領域を含み、
前記非リッジ部の上面と前記リッジ部の側面には、絶縁膜と前記活性層からの放射光に対する光吸収膜とが設けられていることを特徴とした半導体レーザ装置。
【請求項2】
前記第1クラッド層及び前記第2クラッド層は、AlGa1−yN(0<y≦0.6)層とGaN層とを積層させた超格子、またはAlGa1−xN(0<x≦0.3)層により構成され、
前記活性層は、InGa1−ZN/InGa1−WN多重量子井戸構造(0.05≦z≦1.0、0≦w≦1、z>w)を有し、
前記オーバーフロー防止層は、AlGa1−tN(t>x、かつt>y)層からなることを特徴とした請求項1記載の半導体レーザ装置。
【請求項3】
前記光吸収膜は、シリコンを含むことを特徴とした請求項1または2に記載の半導体レーザ装置。
【請求項4】
前記絶縁膜は、酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウム及び酸化ジルコニウムのいずれかを含むことを特徴とした請求項1〜3のいずれか1つに記載の半導体レーザ装置。
【請求項5】
前記基板は、GaNからなることを特徴とした請求項1〜4のいずれか1つに記載の半導体レーザ装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は、半導体レーザ装置に関し、特に、リッジ導波路を有する半導体レーザ装置に関する。
【背景技術】
【0002】
次世代DVD(Digital Versatile Disc)は、ハイビジョン映像の長時間記録や、コンピュータ用大容量記録のために、開発が進んでいる。従来のDVDの4倍以上の記録容量を得るために、半導体レーザ装置の波長は、650ナノメータではなく、400ナノメータ帯の短波長化が必要である。このために、窒化ガリウム系材料が用いられる。
【0003】
このような、高密度光ディスクを実現するために、いわゆるリッジ導波路型半導体レーザ装置が用いられる。この構造は、ダブルへテロ接合上に設けられるクラッド層に、ストライプまたはテーパなどのリッジ部を形成し、水平横モードを制御するものであり、屈折率導波構造と呼ばれる。
【0004】
サファイヤ基板上などに成長される窒化ガリウム系膜は、InAlGaP系膜と比較すると、格子不整合や結晶欠陥を生じやすく積層膜に湾曲部を生じることもあり、リッジ部形状の制御は不十分であった。この結果、高次横方向モードが発生しやすく、出力特性におけるキンク発生が半導体レーザ装置の高出力への障害となっていた。
【0005】
リッジ側面近傍に光吸収膜を設けて高次横方向モードを抑制する技術開示例があるが(特許文献1)、次世代DVDの書き換え用途に対しては、高出力特性および高次横モード抑制において不十分であった。
【特許文献1】特開2002−314197号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、動作電流が低減され、高次横モードが抑制された半導体レーザ装置を提供する。
【課題を解決するための手段】
【0007】
本発明の一態様によれば、
基板と、
前記基板上に設けられた第1導電型を有する第1クラッド層と、
前記第1クラッド層上に設けられた活性層と、
前記活性層上に設けられた第2導電型を有するオーバーフロー防止層と、
前記オーバーフロー防止層上に設けられた第2導電型を有する第2クラッド層と、
を備え、
前記第2クラッド層はリッジ部と非リッジ部とを有し、前記リッジ部に隣接する非リッジ部は厚みが0.1マイクロメータ以下の領域を含み、
前記非リッジ部の上面と前記リッジ部の側面には、絶縁膜と前記活性層からの放射光に対する光吸収膜とが設けられていることを特徴とした半導体レーザ装置が提供される。
【発明の効果】
【0008】
本発明により、動作電流が低減され、高次横モードが抑制されたリッジ導波路型半導体レーザ装置が提供される。
【発明を実施するための最良の形態】
【0009】
以下、図面を参照しつつ、発明の実施の形態につき説明する。
図1は、本発明の第1の具体例にかかる半導体レーザ装置の模式断面図である。n型GaN基板20上に、n型Al0.08Ga0.92Nクラッド層22(厚み0.5〜2.0マイクロメータ)、n型GaN光ガイド層24(厚み0.01〜0.1マイクロメータ)、活性層26が積層されている。
【0010】
さらに、活性層26の上には、p型Al0.2Ga0.8Nオーバーフロー防止層28(厚み5〜20ナノメータ)、p型GaN光ガイド層(厚み0.01〜0.1ナノメータ)、p型Al0.08Ga0.92Nクラッド層32(厚み0.5〜2.0マイクロメータ)、p型GaNコンタクト層34(厚み0.02〜0.2マイクロメータ)が積層されている。
【0011】
これらの半導体積層膜は、例えばMOCVD(Metal Organic Chemical Vapor Deoisition)法を用いて、n型GaN基板20上に、順次成長することができる。なお、n型不純物としてはシリコンが、p型不純物としてはマグネシウムが一般的に用いられる。
【0012】
なお、本明細書において「窒化ガリウム系半導体」とは、InAlGa1−x−yN(0≦x≦1,0≦y≦1、x+y≦1)なる化学式において、組成比x及びyをそれぞれの範囲内で変化させたすべての組成の半導体を含むものとする。また、導電型を制御するために添加される各種の不純物のいずれかをさらに含むものも、「窒化ガリウム系半導体」に含まれるものとする。
【0013】
図1に例示される構造は、リッジ導波路型とも呼ばれる屈折率導波構造に属する。すなわち、p型AlGaNクラッド層32には、高さHを有する破線で表したリッジ部42、厚みJの破線で表した非リッジ部40が形成されている。後に詳述するように、書き換え用途の光ディスクにおいて要求される高出力半導体レーザ装置においては、光出力−動作電流特性におけるキンク発生を抑制する必要がある。キンクは、主として、水平横モードに高次モードを生じるために生じるので、リッジ部42の幅Wを、例えば1〜3マイクロメータの範囲で精度良く形成することが重要である。
【0014】
また、閾値電流低減などのために良く用いられるオフアングル基板などに対して、例えばウェットエッチングを行うと、リッジ側面44が左右非対称となり、かつ傾斜がゆるくなる。従って、リッジ部形成には、RIE(Reactive Ion Etching)法を用いることが好ましい。
【0015】
リッジ部42の側面44及び非リッジ部40の上面には、絶縁膜/光吸収膜を被着する。活性層26からの放射光に対して透明である絶縁膜36としては、SiO、Al、AlN、SiN、Ta、ZrOなどを用いることができる。また、光吸収膜38としては、シリコンを含む材料を用いることができる。本具体例においては、絶縁膜36としてSiOを、光吸収膜38としてアモルファスシリコンを用いる。各層の厚みは0.001〜0.3マイクロメータの範囲で選択できる。図1に例示される第1の具体例においては、SiO膜36及びアモルファスシリコン膜38は、各1層である。
ここで、本願明細書における「光吸収膜」とは、400ナノメータ以上800ナノメータ以下の波長帯において、吸収係数が1×10−1以上であるものをいうものとする。
【0016】
さらに、リッジ部42の上部には、p型GaNコンタクト層34が設けられ、p側電極50とオーム性接触が形成されている。p側電極としては、Pt、Pd、Ni、Auなどの単層、積層、または合金が用いられる。また、n型GaN基板20の裏面には、n型電極が形成されている。n型電極としては、Ti、Pt、Au、Alなどの単層、積層、または合金が用いられる。
【0017】
次に、積層構造の作用につき、より詳細に説明する。図2は、本具体例の半導体積層構造のバンド図である。ノンドープGaN拡散防止層27は、例えばマグネシウム(Mg)などのp型不純物が、高濃度であるp型AlGaNオーバーフロー防止層28から、活性層26へ拡散することを抑制する。
また、p型オーバーフロー防止層28は、n型GaN基板20側から注入された矢印で表す電子Qが、p型AlGa1−xNクラッド層32へ漏れることによる動作電流の不必要な増大を抑制する。
【0018】
すなわち、p型AlGa1−xNオーバーフロー防止層28のアルミニウム組成比xを大きくすると、活性層26とのバンドギャップ差が大きくなり、n側から注入された電子Qが活性層26からp型AlGa1−xNクラッド層32へ漏れることを低減できる。さらに、p型AlGaNオーバーフロー防止層28のp型濃度を高くすることにより(例えば、1×1020cm−3)、活性層26との伝導帯側へテロ障壁を大きくできるために、電子Qの漏れを一層低減できる。
【0019】
一方、アルミニウム組成比を大とすると、一般に、格子定数は小となるので、格子不整合を生じるなど、結晶性を損なう方向となる。しかし、p型AlGaNオーバーフロー防止層28の厚みは、例えば5〜20ナノメータと薄いので、結晶性の劣化の影響を最小限にとどめることができる。
【0020】
次に、アルミニウム組成比を大とした場合の、ビーム特性につき説明する。アルミニウム組成比を大とすると、屈折率が小となるので、垂直(Y軸)方向への光閉じ込めが強くなる。従って、p型AlGaNクラッド層32のアルミニウム濃度を大きくしすぎると、垂直方向へのビーム広がり角(Θ)が大となり、水平方向へのビーム広がり角(Θ)との比であるアスペクト比(Θ/Θ)が大となる。光出力を有効に利用するには、アスペクト比は、1に近いほうが望ましい。したがって、大きすぎるアスペクト比の場合には、ビーム整形レンズやプリズムなどが必要となり光学系が複雑になるので、実用上好ましくない。本具体例においては、p型AlGaNクラッド層32のアルミニウム組成比を、0.3以下とすることにより、アスペクト比を適正値とできる。
【0021】
次に、積層構造の構成要素に関する補足説明をする。p型クラッド層32は、p型AlGa1−xN層(x≦0.3)に限定されることなく、例えば、AlGa1−yN/GaNペアが積層された超格子層であっても良い。アルミニウム組成比yは、0より大きく、0.6以下であることが望ましい。超格子層にすると、格子不整合などによるストレスが緩和され(すなわちクラック防止などに効果がある)、また、動作電圧を低減できる。例えば、幅2.5ナノメータのGaNと幅2.5ナノメータのAl0.1Ga0.9Nを交互に200組積層することにより、厚み1マイクロメータのクラッド層が実現できる。
【0022】
同様に、n型クラッド層22は、n型Al0.08Ga0.92N層に限定されることなく、AlGa1−zN/GaNペアが積層された超格子層であっても良い。アルミニウム組成比zは、0より大きく0.3以下であることが好ましい。超格子の効果はp型クラッド層と同様である。
【0023】
さらに、InGa1−xN/InGa1−yNからなる活性層26に関しては、単一または多重量子井戸活性層(Multiple Quantum Well)であっても良い。この場合、井戸層におけるインジウム組成比xが0.05以上で1.0以下、障壁層におけるインジウム組成比yが0以上で1.0以下、かつx>yの範囲内で選択することができる。例えば、In0.15Ga0.85N/In0.02Ga0.98N構造とし、井戸層厚み2〜5ナノメータ、井戸数2〜4、障壁層厚み3〜10ナノメータとすることができる。活性層の組成及びプロファイルを変えることにより、閾値電流、FFP、温度特性などを調整できる。さらに、p型AlGaNオーバーフロー防止層28におけるアルミニウム組成比は、p型AlGaNクラッド層32におけるアルミニウム組成比より高くすることにより、オーバーフロー防止効果を高めることが望ましい。
【0024】
上記リッジ導波路構造において、リッジ部42の底面の幅Wは、例えば1〜3マイクロメータとすると、基本水平横モード60に対しては、光閉じ込め効果がある。一方、高次水平横モードに対しては、光閉じ込め効果が不十分である。例えば、1次水平横モード62が、基本水平横モード60をはさんで両側に発生しうる。これらは、特に高出力時に発生しやすく、光出力−動作電流特性におけるキンク、すなわち「折れ曲がり」として現れる。光ディスクの書き換えにおいては、消去、記録、再生で照射パワーを変えなければならない。従って、「折れ曲がり」の多い半導体レーザ装置では、精度の高い照射パワーの制御が困難となる。
【0025】
本具体例においては、非リッジ部40の厚みJを0.1マイクロメータメータ以下とすることにより、1次水平横モード62を光吸収膜38において減衰させることができる。すなわち、p型AlGaNオーバーフロー防止層28は、アルミニウム組成比が0.2と高いので、屈折率が低い(約2.439)。このために、水平横モードはn型GaN光ガイド層24側にずれるので、非リッジ部40の厚みJを0.1マイクロメータ以下にする。この結果、1次水平横モード62は、光吸収層38と接触するので、光軸に沿うビームが減衰され、光出力−動作電流特性におけるキンクを抑制できる。2次以上の水平横モードに対しても、光吸収膜38は効果を発揮する。なお、アモルファスシリコンの吸収係数は、400ナノメータの波長において、約1.00×10−1である。
【0026】
また、非リッジ部40の厚みJを薄くすると、高次水平横モードを低減できるほかに動作電流が低減できることを以下に説明する。すなわち、本具体例において、非リッジ部40の厚みJを0.02、0.1、0.14μmとしてシミュレーションを行った。
【0027】
また、シミュレーションにおける他の構成要素の主要諸元を以下に示す。n型Al0.05Ga0.95Nクラッド層22の厚みは1.5マイクロメータ、In0.01Ga.99N下側障壁層の厚みは0.04マイクロメータ、In0.13Ga0.87N井戸層の厚みは3ナノメータ(3層)、井戸層間のIn0.01Ga0.99N障壁層の厚み10ナノメータ(2層)、In0.01Ga0.99N上側障壁層の厚みは0.04マイクロメータである。さらにGaN拡散防止層の厚みは0.05ナノメータ、p型Al.2Ga0.8Nオーバーフロー防止層28の厚みは0.01マイクロメータ、p型Al0.05Ga0.95Nクラッド層32の厚みは0.6マイクロメータ、p型GaNコンタクト層34の厚みは0.1マイクロメータとした。なお、リッジ幅は2.1マイクロメータとした。非リッジ部40の上面及びリッジ部42の側面44には、SiOが0.02マイクロメータ、およびアモルファスシリコンが0.4マイクロメータ、それぞれ被着されている。
【0028】
また、窒化ガリウム系半導体レーザ装置の光共振器を構成する前側へきかい面には反射率10%の反射膜が、後側へきかい面には反射率95%の反射膜が設けられており、前側へきかい面からの光出力が高められている。
【0029】
図3は、周囲温度(Ta)が80℃における、光出力−動作電流特性のシミュレーション結果を表すグラフ図である。非リッジ部40の厚みJが、小さいほうがより動作電流を低減できることがわかる。このシミュレーション結果から、100mW出力時動作電流の非リッジ部40の厚みJ依存性を求めて、図4に例示する。非リッジ部40の厚みJが0.10マイクロメータ以下において、低動作電流が可能であるが、非リッジ部40の厚みが0.10マイクロメータ以上において動作電流が急激に上昇している。従って、非リッジ部40の厚みJは0.1マイクロメータ以下であることが、高次横モード抑制のためのみならず、動作電流低減のためにも好ましい。
【0030】
図5は、Ta=80℃におけるCW光出力―動作電流特性測定値を表すグラフ図である。本具体例においては、非リッジ部40の厚みJが0.02マイクロメータであり、比較例においては、非リッジ部40の厚みJを0.14マイクロメータとした。本具体例においては、光吸収膜38による高次水平横モード抑制および非リッジ部40の厚みを小さくすることによる電流の低減を可能とした。この結果、Ta=80℃、動作電流が約145mAにおいて、100mWのCW光出力が実現できている。
【0031】
一方、比較例においては、非リッジ部40の厚みJが0.14マイクロメータと厚いために活性層26との距離が大きい。この結果、1次水平横モード62を充分には減衰させることができずに、出力特性に「折れ曲がり」であるキンクWが生じている。さらに、80mWのCW光出力時の動作電流が約190mAであり、本具体例よりも約70mA大きい。この結果、次世代DVD書き換え用途仕様を満たす高出力、低動作電流特性が得られなかった。
【0032】
次世代DVD用途に用いられる窒化ガリウム系半導体レーザ装置においては、波長帯650ナノメータの半導体レーザ装置と比較すると、自然発光成分が多い。従って、ディスクへの照射パワーが高くなる。例えば、再生時CW10〜20mW、消去時CW70〜80mW、書き込み時CW100mW以上である。しかし、本具体例によりこれらが実現できる。
【0033】
図6は、本具体例の第1変形例である。すなわち、絶縁膜36と光吸収膜38とは、交互に各2層設けられている。この結果、1次水平横モード62の抑制がより容易となる。なお、光吸収膜38を、p型AlGaNクラッド層32に接して設けることも可能であるが、絶縁膜36のほうが電気的絶縁性に優れている。
【0034】
図7は、本具体例の第2の変形例である。リッジ部42の側面44の下部に、マイクロトレンチ部54が設けられている。マイクロトレンチ部54は、リッジ部42を形成する際のRIEプロセス条件の選択により形成できる。マイクロトレンチ54の下端と、p型光ガイド層30上面との距離Kが、図1及び図6における非リッジ部42の厚みJと対応する。上記距離Kを0.1マイクロメータ以下とすることにより、動作電流の低減と、高次水平横モードの抑制が可能となる。
【0035】
次に、窒化ガリウム系積層膜の結晶性につき説明する。窒化ガリウム系積層膜を構成するAlGa1−xN層やInGa1−yN層は、それぞれに格子定数の違いが大きい。このために、結晶にクラックが入ったり、積層膜が湾曲することがある。特に、サファイヤ基板上にELOG(Epitaxial Lateral Over Growth)などを用いて、積層膜を形成する場合には、バッファー層を設けるなどにより結晶性を改善する。本具体例においても、上記ELOGを用いることも可能であるが、GaN基板20上に積層膜を設けるほうが、より格子整合ができて、積層膜の湾曲やクラックを低減できる。この結果、非クラッド部40の厚みを、例えば0.1マイクロメータ以下で精度よく形成することがより容易となる。
【0036】
また、n側電極52をn型GaN基板20の裏面に形成できるので、InGaAlP、GaAs、InPなどを材料とした半導体レーザ装置と同様に、電極を上下に配置できる。この結果、組み立てプロセスが簡素化できて、信頼性が向上できる。
【0037】
さらに、ELOG構造と異なり、電流経路がチップの上下であるために半導体積層膜の水平方向への電流が少なく、基板側における抵抗成分が小さい。この結果、動作電圧の低減が可能となる。
【0038】
また、以上の具体例おいては、窒化ガリウム系半導体レーザ装置に関して説明を行った。しかし、本発明はこれに限定されることなく、InGaAlP系、GaAlAs系、InP系などの化合物半導体レーザ装置に適用できる。
【0039】
以上、具体例を参照しつつ本発明の実施の形態を説明した。しかし、本発明はこれらに限定されるものではない。例えば、リッジ部を導波路とする半導体レーザ装置を構成する各要素の、サイズ、材質、配置関係などに関して、当業者が各種の設計変更を加えたものであっても、本発明の要旨を有する限りにおいては本発明の範囲に包含される。
【図面の簡単な説明】
【0040】
【図1】本発明の具体例にかかる半導体レーザ装置の模式断面図である。
【図2】本発明の具体例にかかる半導体レーザ装置のバンド図である。
【図3】本発明の具体例にかかる半導体レーザ装置の光出力−動作電流のシミュレーション結果を表すグラフ図である。
【図4】半導体レーザ装置における動作電流の非リッジ部厚み依存性をシミュレーションした結果を表わすグラフ図である。
【図5】本具体例のCW光出力−動作電流特性測定値を比較例と対比して表したグラフ図である。
【図6】本具体例の第1変形例である半導体レーザ装置の模式断面図である。
【図7】本具体例の第2変形例である半導体レーザ装置の模式断面図である。
【符号の説明】
【0041】
20 n型GaN基板
22 n型AlGaNクラッド層
24 n型GaN光ガイド層
26 活性層
28 p型AlGaNオーバーフロー防止層
30 p型光ガイド層
32 p型AlGaNクラッド層
34 p型GaNコンタクト層
36 絶縁膜
38 光吸収層
40 非リッジ部
42 リッジ部
44 リッジ側面
50 p側電極
52 n側電極
54 マイクロトレンチ部
60 基本水平横モード
62 一次水平横モード




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013