米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 電気素子 -> 株式会社東芝

発明の名称 半導体装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−5635(P2007−5635A)
公開日 平成19年1月11日(2007.1.11)
出願番号 特願2005−185195(P2005−185195)
出願日 平成17年6月24日(2005.6.24)
代理人 【識別番号】100058479
【弁理士】
【氏名又は名称】鈴江 武彦
発明者 池橋 民雄
要約 課題
横方向の大きな変位を生成できる圧電アクチュエータを備えた半導体装置を提供することを目的としている。

解決手段
半導体装置は、一端が支持部13で固定された状態で第1の方向に延設され、残留応力によって上記支持部を起点として反った梁部11と、上記梁部の他端に接続されて上記第1の方向と交差する第2の方向に延設され、バイアス電圧の印加によって、上記基板と水平で且つ上記第1の方向及び上記第1の方向と逆方向に移動する圧電部12とを備える。
特許請求の範囲
【請求項1】
一端が第1の支持部で基板に固定された状態で第1の方向に延設され、残留応力によって前記第1の支持部を起点として反った第1の梁部と、
前記第1の梁部の他端に接続されて前記第1の方向と交差する第2の方向に延設され、第1のバイアス電圧の印加によって、前記基板と水平で且つ前記第1の方向及び前記第1の方向と逆方向に移動する第1の圧電部と
を具備することを特徴とする半導体装置。
【請求項2】
前記第1の梁部に設けられ、第2のバイアス電圧の印加によって、前記第1の梁部の反り量を増大または低減する方向に駆動する第2の圧電部を更に具備することを特徴とする請求項1に記載の半導体装置。
【請求項3】
一端が第2の支持部で固定された状態で前記第1の方向と逆方向に延設され、残留応力によって前記第2の支持部を起点として前記第1の梁部と逆方向に反り、前記第1の梁部の一部に接する第2の梁部を更に具備することを特徴とする請求項1に記載の半導体装置。
【請求項4】
前記第1の圧電部の一端は前記第1の梁部の他端に接続され、
一端が前記第1の圧電部の他端に接続され、前記第1の方向と逆方向に延設され、残留応力によって前記第1の梁部と同一方向に反る第2の梁部を更に具備することを特徴とする請求項1に記載の半導体装置。
【請求項5】
第1の電極と、
少なくとも一部が前記第1の電極とオーバーラップするように対向して配置され、前記第1の電極とのオーバーラップ量が変化することにより、前記第1の電極との間の容量値が変化する第2の電極と、
前記第1の電極及び前記第2の電極の少なくとも一方を駆動し、前記第1の電極と前記第2の電極とのオーバーラップ量を変化させるアクチュエータとを具備し、
前記アクチュエータは、
一端が支持部で基板に固定された状態で第1の方向に延設され、残留応力によって前記支持部を起点として反った第1の梁部と、
一端が前記第1の梁部の他端に接続されて前記第1の方向と交差する第2の方向に延設され、バイアス電圧の印加によって、前記基板と水平で且つ前記第1の方向及び前記第1の方向と逆方向に移動する圧電部と、
一端が前記圧電部の他端に接続され、前記第1の方向と逆方向に延設され、他端が前記第1の電極または前記第2の電極に接続され、残留応力によって前記第1の梁部と同一方向に反った第2の梁部とを備える
ことを特徴とする半導体装置。
発明の詳細な説明
【技術分野】
【0001】
この発明は、マイクロマシンもしくはMEMS(Micro-Electro-Mechanical Systems)技術を用いて形成した圧電アクチュエータを用いる、スイッチ、可変容量、加速度センサ、ジャイロスコープ、慣性センサチップ、XYステージなどの半導体装置に関する。
【背景技術】
【0002】
MEMS技術を用いて形成したアクチュエータの駆動方式には、静電型、圧電型、熱型、電磁型などがある。このうち圧電型は低電圧・低消費電力で駆動が可能であり、携帯機器に搭載するアクチュエータの駆動方式として適している。圧電アクチュエータは、例えばスイッチや可変容量などに使用されている。
【0003】
上記圧電アクチュエータを使用した可変容量及びスイッチについては、例えば非特許文献1に記載されている。この非特許文献1に記載されているように、圧電アクチュエータを使用すると、3V程度の低電圧で上下方向に数ミクロン程度の変位を生成できる。
【0004】
しかしながら、従来の圧電アクチュエータは、横方向に大きな変位を作り出すことができないため適用可能なデバイスが限定されていた。
【非特許文献1】H.C.Lee et al, "Silicon Bulk Micromachined RF MEMS Switches with 3.5 Volts Operation by using Piezoelectric Actuator", MTT-S Digest, p585-588, 2004
【発明の開示】
【発明が解決しようとする課題】
【0005】
この発明の目的とするところは、横方向の大きな変位を生成できる圧電アクチュエータを備えた半導体装置を提供することにある。
【課題を解決するための手段】
【0006】
この発明の一態様によると、一端が第1の支持部で基板に固定された状態で第1の方向に延設され、残留応力によって前記第1の支持部を起点として反った第1の梁部と、前記第1の梁部の他端に接続されて前記第1の方向と交差する第2の方向に延設され、第1のバイアス電圧の印加によって、前記基板と水平で且つ前記第1の方向及び前記第1の方向と逆方向に移動する第1の圧電部とを具備する半導体装置が提供される。
【0007】
また、この発明の他の一態様によると、第1の電極と、少なくとも一部が前記第1の電極とオーバーラップするように対向して配置され、前記第1の電極とのオーバーラップ量が変化することにより、前記第1の電極との間の容量値が変化する第2の電極と、前記第1の電極及び前記第2の電極の少なくとも一方を駆動し、前記第1の電極と前記第2の電極とのオーバーラップ量を変化させるアクチュエータとを具備し、前記アクチュエータは、一端が支持部で基板に固定された状態で第1の方向に延設され、残留応力によって前記支持部を起点として反った第1の梁部と、一端が前記第1の梁部の他端に接続されて前記第1の方向と交差する第2の方向に延設され、バイアス電圧の印加によって、前記基板と水平で且つ前記第1の方向及び前記第1の方向と逆方向に移動する圧電部と、一端が前記圧電部の他端に接続され、前記第1の方向と逆方向に延設され、他端が前記第1の電極または前記第2の電極に接続され、残留応力によって前記第1の梁部と同一方向に反った第2の梁部とを備える半導体装置が提供される。
【発明の効果】
【0008】
この発明によれば、横方向の大きな変位を生成できる圧電アクチュエータを備えた半導体装置が得られる。
【発明を実施するための最良の形態】
【0009】
以下、この発明の実施形態について図面を参照して説明する。
[第1の実施形態]
図1及び図2はそれぞれ、この発明の第1の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して示す概略的な平面図及び斜視図である。図1は犠牲層を除去する前の状態を示しており、図2は犠牲層を除去した後の状態を示している。
【0010】
図1に示す如く、圧電アクチュエータは、梁部11と圧電部12を備えている。上記梁部11は、一端が支持部(アンカーとも呼ばれる)13で基板に固定され、他端が第1の方向に延設されている。上記圧電部12は、一端が上記梁部11の他端に接続され、上記第1の方向と交差する第2の方向に延設されている。
【0011】
本例では、長方形の梁部11における長手方向と、同じく長方形の圧電部12における長手方向が直交しているが、梁部11と圧電部12が交差していれば良く、必ずしも90度の角度に限定されるものではない。上記梁部11と圧電部12は、ともに犠牲層14上に形成されており、梁部11は支持部13で基板に固定されている。
【0012】
上記犠牲層14を除去して、梁部11と圧電部12の下を空洞にすると、図2に矢印AAで示すように、梁部11の残留応力によってこの梁部11における支持部13と反対側の端部が反り上がる。これによって、圧電部12が基板の主表面に対して垂直な方向に立ち上がる。この状態で圧電部12にバイアス電圧を印加して駆動すると、矢印ABに示すような横方向の変位が生成できる。
【0013】
図2では、圧電部12が基板の主表面に対してほぼ垂直になっているが、梁部11の持ち上げ角度を90度以外の角度にすることにより、圧電部12を斜め方向に変位させることもできる。
【0014】
次に、MEMS技術を用いて形成した圧電アクチュエータの具体的な構造を図3乃至図5により詳しく説明する。図3は圧電アクチュエータの具体的な構成例を示すパターン平面図、図4は図3のA−A’線に沿った断面図、図5は図3のB−B’線に沿った断面図である。図3及び図4に示すように、圧電部12には、圧電膜25を挟んで上下に圧電駆動用上部電極24と圧電駆動用下部電極26が配置されている。上記圧電膜25としては、例えばAlN、PZT、ZnOなどの材料を使用する。上記下部電極26、圧電膜25及び上部電極24は、支持板21上に積層して形成されている。この支持板21は、基板27上に形成された犠牲層14の上に形成される。
【0015】
上記上部電極24と下部電極26に電位差をかけることにより、圧電膜25が伸縮して圧電部12が変位する。この圧電部12は、圧電膜25に対して垂直な方向に変位するが、梁部11が反り上がっているため、基板27に対しては横方向(基板に対して水平方向)の変位となる。
【0016】
一方、梁部11は、図3及び図5に示すように、支持板21とその上層に配置された配線22,23とで構成される。これらの配線22,23は、圧電駆動用上部電極24と圧電駆動用下部電極26にそれぞれ電気的に接続されている。上記支持板21は、基板27上に形成された犠牲層14の上に形成される。
【0017】
上記支持板21は圧縮性の内部応力を有する材料、例えばSiOで形成されている。これに対し、配線22,23は引っ張り性の内部応力を有する材料、例えばAlで形成する。よって、犠牲層14を除去すると、支持板21と配線22,23の内部応力の差により、梁部11が支持部13を起点にして上方向に反り上がる。
【0018】
上記梁部11の反り量を決める残留応力は、支持板21と配線22,23の材料やその組み合わせ、厚さや幅などの断面積によってコントロールできる。また、Al配線22,23の下に大きな圧縮性応力を有する層、例えばTi層を配置すると、反り上がった状態の曲率半径を小さくできる。
【0019】
図3乃至図5に示した圧電アクチュエータは、例えば半導体装置の周知の製造プロセスを用いて形成できる。すなわち、まず基板27上に犠牲層14を形成し、この犠牲層14上にSiOなどからなる支持板21を形成する。
【0020】
上記支持板21上には、下部電極26、圧電膜25及び上部電極24を順次積層して形成し、パターニングすることによって圧電部12を形成する。上記圧電部12上には絶縁膜28を形成し、この絶縁膜28上にAlなどの金属層を形成する。この金属層をパターニングし、下部電極26と上部電極24にそれぞれコンタクトする配線22,23を形成する。上記配線22,23上及び上部電極24上には、表面保護膜29を形成する。
【0021】
上記のようにして圧電部12や配線22,23を形成した後、エッチングなどにより犠牲層14を除去する。犠牲層14を除去して、梁部11及び圧電部12の下を空洞にすると、梁部11の残留応力、すなわち支持板21と配線22,23の内部応力の差により、梁部11の他端が支持部13を起点にして上方向に反り上がり、図2に示したような構造になる。
【0022】
従って、上記のような構成によれば、横方向の大きな変位を生成できる圧電アクチュエータを形成できる。
【0023】
[第2の実施形態]
図6は、この発明の第2の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して示す概略的な斜視図である。本第2の実施形態は、図1及び図2に示した圧電アクチュエータにおける梁部11にも圧電部15を設けたものである。この圧電部15は、圧電部12と同様に、圧電膜を挟んで上下に圧電駆動用上部電極と圧電駆動用下部電極を配置した構成になっている。この圧電部15の圧電膜にも、例えばAlN、PZT、ZnOなどの材料を使用する。そして、上部電極と下部電極に電位差をかけることにより、圧電膜が伸縮して梁部11が図示矢印AC方向に変位、すなわち反り量を変化させることができる。
【0024】
このような構成によれば、圧電部12を矢印AB方向に加えて矢印AC方向にも変位させることができるので、大きく移動させたり、逆に微調整したりすることができる。従って、動きの自由度の大きな圧電アクチュエータを形成できる。
【0025】
[第3の実施形態]
図7及び図8はそれぞれ、この発明の第3の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して示す概略的な斜視図及び側面図である。本第3の実施形態は、上記第1の実施形態の構成に加えて、一端が支持部16で固定され、他端が上記梁部11と逆方向に延設され、残留応力によって上記支持部16を起点として上記梁部11と逆方向に反る第2の梁部17を設けたものである。上記第1,第2の梁部11,17は、図8に示すように、上記支持部13,16と逆側の端部に設けられた係合部18,19により反り上がった状態で固定される。
【0026】
上記のような構成によれば、2つの梁部11,17が反り上がって係合部18,19で接した状態で固定されるので、圧電部12の基板表面に対する角度をほぼ90度にできる。また、2つの梁部11,17が反った状態で接し、固定されているので、機械的な強度を高めることができる。
【0027】
なお、図7及び図8では、梁部11のみに圧電部12を設けたが、梁部17における支持部16の他端側にも圧電部を設けても良い。この場合には、2つの圧電部が同一方向に変位するように電位差を与えても良いし、逆方向に変位するように大きさを変えて電位差を与えても良い。
【0028】
もちろん、上記第2の実施形態と同様に、2つの梁部11,17の少なくとも一方に圧電部を設けることもできる。
【0029】
[第4の実施形態]
図9及び図10はそれぞれ、この発明の第4の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して示す概略的な平面図及び斜視図である。上記第1の実施形態においては梁部11の端部と圧電部12の端部を接続し、“L”字型の圧電アクチュエータを構成したのに対し、本第4の実施形態では梁部11の端部と圧電部12’の中央部付近を接続し、“T”字型の圧電アクチュエータを構成している。
【0030】
他の基本的な構成や作用効果は第1の実施形態と同様であるので、同一部分に同じ符号を付してその詳細な説明は省略する。
【0031】
なお、“L”字型や“T”字型の圧電アクチュエータだけでなく、梁部11の端部と圧電部12の端部を所定の角度や曲率を持たせて接合した構造でも良い。
【0032】
[第5の実施形態]
図11は、この発明の第5の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの具体的な構成例を示すパターン平面図である。この圧電アクチュエータは、前述した第1の実施態様で示した“L”字型の2つの圧電アクチュエータを“コ”の字型に接続した構成になっている。
【0033】
すなわち、圧電アクチュエータにおける第1の梁部11の一端(根元)は支持部13によって基板に固定された状態で第1の方向(横方向)に延設されている。圧電部12は、上記梁部11と交差する第2の方向(縦方向)に延設され、一端が上記梁部11の他端に接続されている。上記圧電部12には、圧電膜を挟んで圧電駆動用上部電極24と圧電駆動用下部電極26が配置されている。第2の梁部20の一端は上記圧電部12の他端に接続され、他端(根元)は電極30に固定されている。上記梁部20には配線31が接続され、この配線31は圧電部12における圧電駆動用下部電極26に電気的に接続されている。
【0034】
上記電極30には、配線23、圧電駆動用下部電極26及び配線31を介して電圧が印加される。ここで、上記圧電駆動用上部電極24を介して電極30に電圧を加えるようにしても良い。上記圧電部12は、バイアス電圧の印加によって横方向、すなわち梁部11が支持部13によって固定される面と水平で且つ前記第1の方向及び前記第1の方向と逆方向に移動する。
【0035】
上述した圧電アクチュエータと種々の部材とを組み合わせることにより、様々なMEMSデバイスを実現できる。次に、上記図11に示した圧電アクチュエータを用いた種々の適用例について説明する。
【0036】
(第1の適用例)
まず、上記圧電アクチュエータを用いた第1の適用例について説明する。図12はアナログ可変容量のパターン平面図、図13は図12のC−C’線に沿った断面図であり、いずれも犠牲層を除去する前の状態を示している。基板51上には、第1,第2の電極52,53が犠牲層54を介在して対向配置されている。上記電極52,53はそれぞれ、スリット状の複数の窓を備えた矩形である。上記電極53の角部近傍にはそれぞれ、図11に示した構造のアクチュエータ55−1〜55−4が配置されている。
【0037】
上記各アクチュエータ55−1〜55−4はそれぞれ、第1の梁部11−1〜11−4の一端が支持部13−1〜13−4で固定され、他端が横方向(第1の方向)に延設されている。上記圧電部12−1〜12−4の一端はそれぞれ、第1の梁部11−1〜11−4の他端に接続され、上記第1の方向と交差(例えば直交)する縦方向(第2の方向)に延設されている。第2の梁部20−1〜20−4は、一端が上記圧電部12−1〜12−4の他端に接続され、上記第1の方向と逆方向に延設され、他端が上記電極53に接続されている。
【0038】
図14は、上記犠牲層54を除去した後の状態を示す斜視図である。上記第1の梁部11−1〜11−4は残留応力によって上記支持部13−1〜13−4を起点として反り、上記第2の梁部20−1〜20−4も残留応力によって同様に反る。第2の電極52は基板51上に固定されており、第1の電極53は基板51上に浮いた状態となる。第1の電極53の角部近傍にはそれぞれ、上記圧電アクチュエータ55−1〜55−4が複数個(本例では4個)接続されている。上記各圧電アクチュエータ55−1〜55−4の圧電部12−1〜12−4へのバイアス電圧の印加によって上記梁部11−1〜11−4が支持部13−1〜13−4で固定される面(基板51の主表面)と水平で且つ梁部11−1〜11−4の延設方向または逆方向に移動する。
【0039】
上記第1,第2の電極53,52は、スリット状の複数の窓を備えた矩形であり、少なくとも一部がオーバーラップするように対向して配置されている。これらの電極53,52は容量を形成しており、図15に示すように電極53,52間のオーバーラップ面積を変えることにより容量値が変化する。この可変容量(無双連子型可変容量)は、電極53,52間のオーバーラップ面積に応じて容量値をアナログ的に変化させることができる。容量値の変化量は、圧電膜へ印加した電位差に比例するため制御が容易である。また、圧電アクチュエータを使用しているため、低電圧、低消費電力で容量値を変化させることができる。
【0040】
以上の特徴から、本第1の適用例の可変容量は、例えば図16に示すVCOのようにフィードバック制御が必要な回路に適している。
【0041】
図16は、本アナログ可変容量(VCで表す)を搭載したVCOの回路構成例を示している。このVCOは、インダクタL1,L2、アナログ可変容量VC、トランジスタQ1,Q2及び定電流源CIなどを含んで構成されている。インダクタL1,L2の一端は電源Vccに接続され、他端はトランジスタQ1,Q2の電流通路の一端に接続される。上記トランジスタQ1,Q2のゲートは、上記インダクタL2,L1の他端にそれぞれ接続される。また、これらインダクタL1,L2の他端間には、上記アナログ可変容量VCが接続される。そして、上記トランジスタQ1,Q2の電流通路の他端と接地点Vss間に定電流源CIが接続されている。
【0042】
上記構成のVCOは、低電圧・低消費電力で容量値をアナログ的に変化させることができ、携帯機器に好適である。
【0043】
なお、本適用例では上部電極53を移動させる場合について説明したが、上部電極53を固定した状態で下部電極52を移動させても良く、両方を相対的に移動させてオーバーラップ面積を変えても良い。
【0044】
また、VCOへの適用例について説明したが、アンテナ整合回路などの他の可変容量にも適用できる。
【0045】
更に、図11では、第1の梁部11における支持部13から圧電部12までの距離(ΔL1)と、第2の梁部20における電極30から圧電部12までの距離(ΔL2)が同じ場合を例にとって説明したが、図17に示すように距離ΔL1,ΔL2が異なるように構成しても良い。これにより、第1,第2の梁部11,20が反り上がった際の第1,第2の電極53,52間の距離を調整できる。特に、“ΔL1>ΔL2”とすれば、反り上がった時に第1の電極53が高く浮くため、第1,第2の電極53,52間の距離を犠牲層54の除去前より増やすことができる。これは犠牲層54の厚さが薄くてもMEMS可変容量ができることを意味する。このように、犠牲層54が薄いと電極52へのコンタクト抵抗が下げられるなどの利点がある。
【0046】
(第2の適用例)
図18(a),(b)はそれぞれ、この発明の第2の適用例について説明するためのもので、加速度センサの構成例と電圧検知回路を示している。(a)図に示す加速度を検知するための検知板60に、図示矢印方向の加速度が加わると、圧電アクチュエータ61−1〜61−4の圧電膜62−1〜62−4に応力が加わって電圧が誘起され、各圧電膜62−1〜62−4の上部電極と下部電極間に電位差が生じる。この電位差を配線64−1〜64−4を介して(b)図に示す電圧検知回路63に供給し、大きさをモニタすることにより加速度が検知できる。
【0047】
この際、上記電圧検知回路63で複数の圧電膜62−1〜62−4の起電力の差分を見ることにより、一方向だけでなくX,Y方向の加速度をモニタできる。
【0048】
(第3の適用例)
図19は、この発明の第3の適用例について説明するためのもので、ジャイロスコープ(以下、ジャイロと称する)の構成例を示している。本適用例では、圧電アクチュエータをレファレンス振動の生成用とコリオリ力の検出用に用いている。検知板70の角部近傍に配置された圧電アクチュエータ71−1〜71−4における圧電膜72−1〜72−4は、レファレンス振動の生成に使用するものである。すなわち、圧電膜72−1〜72−4に発振波形の電界を印加し、Y軸方向のレファレンス振動を生成する。この状態で系をZ軸周りに回転させると、X軸方向のコリオリ力が生じる。このコリオリ力を、圧電アクチュエータ71−5,71−6の圧電膜72−5,72−6に生成された電位差の差分で検知すれば角速度が検出できる。
【0049】
(第4の適用例)
図20は、この発明の第4の適用例について説明するためのもので、3軸の加速度センサ81−1〜81−3と3軸のジャイロ82−1〜82−3を1つのチップに混載して慣性センサチップ80を構成したものである。加速度センサ81−1の圧電膜は基板と平行に配置されており、Z軸方向の加速度を検出できる。加速度センサ81−2,81−3はそれぞれY軸、Z軸方向の加速度が検出できるようになっている。
【0050】
一方、ジャイロ82−1はZ軸まわりの角速度を検出できる。ジャイロ82−2の外周部の圧電膜は基板と平行に配置されている。この圧電膜はZ軸方向のレファレンス振動の生成に使用する。そして、レファレンス振動が生成されている状態でX軸まわりの回転が生じると、Y軸方向のコリオリ力が発生する。これを内側の圧電膜で検知することにより、X軸まわりの角速度を検知できる。同様に、ジャイロ82−3はY軸まわりの角速度を検知できる。
【0051】
このようなチップ構成を採用すれば、低電圧・低消費電力動作が可能な3軸加速度センサと3軸ジャイロを1チップ内に形成できる。これにより、1軸や2軸の慣性センサを複数個使用する場合と比較して、センサ部の体積とコストを削減できる。
【0052】
上記加速度センサとジャイロは、例えばジェスチャコンロールが可能な携帯機器、3次元マウス、リモコンなどの入力デバイスとして使用可能である。
【0053】
特に、携帯電話やリモコンに採用した場合、制御スイッチの数が削減でき、初心者にも容易に制御できる入力デバイスができる。また、携帯電話においてGPS(Global Positioning System)と組み合わせて位置情報の把握に使用することもできる。更に、ロボット等の姿勢制御にも使用可能である。
【0054】
(第5の適用例)
図21は、この発明の第5の適用例について説明するためのもので、XYステージを示している。図11及び図17に示したような“コ”の字型の圧電アクチュエータを直交する方向に配置することにより、X,Y方向の変位を実現し、平面内の2方向に動かすことができる。圧電アクチュエータ90−1〜90−4はステージ91をX方向に駆動し、圧電アクチュエータ92−1〜92−4はステージ93をY方向に駆動する。上記圧電アクチュエータ90−1〜90−4は、梁部がステージ91,93間に接続されている。また、圧電アクチュエータ92−1〜92−4の一方の梁部はステージ93に接続され、他方の梁部は固定されている。
【0055】
このような構成によれば、圧電アクチュエータ90−1〜90−4でステージ91をX方向に駆動し、圧電アクチュエータ92−1〜92−4でステージ93をY方向に駆動することにより、ステージ91をX,Y方向に自由に移動できる。このXYステージは、例えばプローブ型メモリに使用できる。
【0056】
なお、上述した第1乃至第5の適用例のように、複数の圧電アクチュエータを用いる際には、同一ロット品を使うことで残留応力のばらつきによる梁部の反り量の相違を実質的に無視できる程度まで低減できる。
【0057】
また、圧電部への電圧印加時に、移動量のばらつきを測定し、この測定値を圧電部への電圧印加回路にフィードバックし、反り量をコントロールしても良い。
【0058】
上述したように、この発明の1つの側面によれば、残留応力による梁部の反り上がりにより圧電部が基板に対して90度程度傾くようにしたので、この圧電部を駆動することにより横方向の変位が実現できる。
【0059】
従って、低電圧・低消費電力で横方向の大きな変位を実現可能な圧電アクチュエータができる。また、この圧電アクチュエータを利用してスイッチ、可変容量、加速度センサ、ジャイロスコープ、慣性センサチップ及びXYステージなどを形成できる。
【0060】
以上第1乃至第5の実施形態と第1乃至第5の適用例を用いてこの発明の説明を行ったが、この発明は上記各実施形態や適用例に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記各実施形態と適用例には種々の段階の発明が含まれており、開示される複数の構成要件の適宜な組み合わせにより種々の発明が抽出され得る。例えば各実施形態と適用例に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
【図面の簡単な説明】
【0061】
【図1】この発明の第1の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して概略的に示しており、犠牲層の除去前の平面図。
【図2】この発明の第1の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して概略的に示しており、犠牲層の除去後の斜視図。
【図3】圧電アクチュエータの具体的な構成例を示すパターン平面図。
【図4】図3のA−A’線に沿った断面図。
【図5】図3のB−B’線に沿った断面図。
【図6】この発明の第2の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して示す概略的な斜視図。
【図7】この発明の第3の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して概略的に示しており、犠牲層の除去前の平面図。
【図8】この発明の第3の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して概略的に示しており、犠牲層の除去後の側面図。
【図9】この発明の第4の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して概略的に示しており、犠牲層の除去前の平面図。
【図10】この発明の第4の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して概略的に示しており、犠牲層の除去後の斜視図。
【図11】この発明の第5の実施形態に係る半導体装置について説明するためもので、圧電アクチュエータの要部を抽出して具体的な構成例を示すパターン平面図。
【図12】圧電アクチュエータの第1の適用例について説明するためのもので、アナログ可変容量における犠牲層の除去前のパターン平面図。
【図13】図12のC−C’線に沿った断面図。
【図14】図12に示したアナログ可変容量における犠牲層を除去した後の状態を示す斜視図。
【図15】アナログ可変容量における容量値の変化について説明するためのもので、図14のD−D’線に沿った断面図。
【図16】アナログ可変容量が適用されるVCOの回路図。
【図17】図11に示した圧電アクチュエータの変形例について説明するためのもので、圧電アクチュエータの要部を抽出して他の具体的な構成例を示すパターン平面図。
【図18】圧電アクチュエータの第2の適用例について説明するためのもので、(a)図は加速度センサの構成例を示す斜視図、(b)図は電圧検知回路を示すブロック図。
【図19】圧電アクチュエータの第3の適用例について説明するためのもので、ジャイロスコープの構成例を示す斜視図。
【図20】圧電アクチュエータの第4の適用例について説明するためのもので、3軸の加速度センサと3軸のジャイロを1つのチップに混載させた慣性センサチップを示す平面図。
【図21】圧電アクチュエータの第5の適用例について説明するためのもので、XYステージを示す斜視図。
【符号の説明】
【0062】
11,17,20…梁部、12,15…圧電部、13,16…支持部(アンカー)、14…犠牲層、18,19…係合部、21…支持板、22,23,31…配線、24…圧電駆動用上部電極、25…圧電膜、26…圧電駆動用下部電極、27…基板、28…絶縁膜、29…表面保護膜、30…電極。




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013