米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 核技術 -> 株式会社日立製作所

発明の名称 沸騰水型原子炉、及び沸騰水型原子炉における蒸気配管の音響振動抑制方法
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−232537(P2007−232537A)
公開日 平成19年9月13日(2007.9.13)
出願番号 特願2006−53795(P2006−53795)
出願日 平成18年2月28日(2006.2.28)
代理人 【識別番号】100064414
【弁理士】
【氏名又は名称】磯野 道造
発明者 松浦 正義 / 大塚 雅哉 / 藤本 清志
要約 課題
発電プラントの設備コストを増大させることなく、主蒸気系で発生する音響共鳴に伴う圧力振動を抑制することができる沸騰水型原子炉を提供する。

解決手段
蒸気ドーム6から高圧タービン10に至る蒸気配管9の下方にヘルムホルツ共鳴管12が設置されている。蒸気配管9を通過する蒸気2によって生成されたドレン122aは、ヘルムホルツ共鳴管12の共鳴減衰管122に貯えられる。水位発信器23が上限水位(HWL)を検出すると、電気/圧力変換器24を介してダイアフラム25を駆動して水位調節弁22を開にしてドレン122aを排水する。水位発信器23が下限水位(LWL)を検出すると、水位調節弁22を閉にしてドレン122aの排水を止める。よって、共鳴減衰管122の空間体積は、蒸気配管9を通過する蒸気2によって発生する音響共鳴を抑制するのに最適な体積となるように維持される。
特許請求の範囲
【請求項1】
原子炉圧力容器と、該原子炉圧力容器の内部で発生させた蒸気を該原子炉圧力容器の上部の蒸気ドームから外部へ輸送する蒸気配管と、該蒸気配管に連結して前記蒸気により駆動される高圧タービンとを備えた沸騰水型原子炉において、
前記蒸気配管は、自己に通気するように下方にヘルムホルツ共鳴管を付設している
ことを特徴とする沸騰水型原子炉。
【請求項2】
前記ヘルムホルツ共鳴管は、前記蒸気配管で輸送される蒸気によって生成されたドレンを貯える共鳴減衰管を備え、
該ヘルムホルツ共鳴管は、
前記共鳴減衰管に貯えられたドレンの水位を検出する水位センサと、
前記水位センサによって検出された前記ドレンの水位が所定の範囲内のレベルに維持されるように該ドレンを排水する水位調節弁とを付設している
ことを特徴とする請求項1に記載の沸騰水型原子炉。
【請求項3】
前記ヘルムホルツ共鳴管は、前記蒸気配管で輸送される蒸気によって生成されたドレンをそのまま通過させて排水する共鳴減衰管を備える
ことを特徴とする請求項1に記載の沸騰水型原子炉。
【請求項4】
原子炉圧力容器と、該原子炉圧力容器の内部で発生させた蒸気を該原子炉圧力容器の上部の蒸気ドームから外部へ輸送する蒸気配管と、該蒸気配管に連結して前記蒸気により駆動される高圧タービンとを備えた沸騰水型原子炉において、
前記蒸気配管に通気するように該蒸気配管の下方に付設されたヘルムホルツ共鳴管と、
前記蒸気配管によって輸送される蒸気によって発生する音響共鳴に起因する圧力振動の振幅を検出する圧力センサと、
前記圧力センサによって検出された前記圧力振動の振幅の大きさに応じて前記ヘルムホルツ共鳴管の入口配管の開度を調整する開度調整弁とを備える
ことを特徴とする沸騰水型原子炉。
【請求項5】
前記ヘルムホルツ共鳴管は、前記蒸気配管で輸送される蒸気によって生成されたドレンを貯える共鳴減衰管を備え、
該ヘルムホルツ共鳴管は、
前記共鳴減衰管に貯えられたドレンの水位を検出する水位センサと、
前記水位センサによって検出された前記ドレンの水位が所定の範囲内のレベルに維持されるように該ドレンを排水する水位調節弁とを付設している
ことを特徴とする請求項4に記載の沸騰水型原子炉。
【請求項6】
前記ヘルムホルツ共鳴管は、前記蒸気配管で輸送される蒸気によって生成されたドレンをそのまま通過させて排水する共鳴減衰管を備える
ことを特徴とする請求項4に記載の沸騰水型原子炉。
【請求項7】
前記ヘルムホルツ共鳴管及び前記圧力センサは、前記蒸気配管の複数箇所にそれぞれ設置され、所定以上の前記圧力振動の振幅を検出した圧力センサの設置位置に対応するヘルムホルツ共鳴管が、自己の入口配管に付設された開度調整弁の開度を調整する
ことを特徴とする請求項4乃至請求項6のいずれかに記載の沸騰水型原子炉。
【請求項8】
前記ヘルムホルツ共鳴管は、複数の開度調整弁を備え、前記圧力振動の振幅の大きさに応じて前記複数の開度調整弁の開度を順次調整する
ことを特徴とする請求項4乃至請求項7のいずれかに記載の沸騰水型原子炉。
【請求項9】
原子炉圧力容器と、該原子炉圧力容器の内部で発生させた蒸気を該原子炉圧力容器の上部の蒸気ドームから外部へ輸送する蒸気配管と、該蒸気配管に連結して前記蒸気により駆動される高圧タービンとを備えた沸騰水型原子炉における蒸気配管の音響振動抑制方法において、
前記蒸気配管で輸送される蒸気によって生成されて、前記ヘルムホルツ共鳴管の共鳴減衰管に貯えられたドレンの水位を検出するステップと、
前記共鳴減衰管の空間容積が、前記蒸気配管で発生した音響共鳴を抑制できる最適容積であるか否かを判定するステップと、
前記共鳴減衰管の空間容積が最適容積でないとき、該共鳴減衰管の空間容積が最適容積となるように前記ドレンを排水して、該ドレンの水位を適正なレベルに調整するステップとを含む
ことを特徴とする沸騰水型原子炉における蒸気配管の音響振動抑制方法。
発明の詳細な説明
【技術分野】
【0001】
本発明は、沸騰水型原子炉及び沸騰水型原子炉における蒸気配管の音響振動抑制方法に係り、特に、蒸気配管の圧力振動を抑制するのに好適な沸騰水型原子炉及び沸騰水型原子炉における蒸気配管の音響振動抑制方法に関する。
【背景技術】
【0002】
沸騰水型原子炉の発電容量を増大する際に、蒸気流量の増大に伴って蒸気ドームや蒸気配管(以下、これらを総称して主蒸気系という)などの圧力振動が増大し、主蒸気系や各種機器の損傷の要因と考えられる事例が報告されている。そこで、主蒸気系の配管及びバルブや各種機器の損傷を避けるために、主蒸気系の流路形状の適正化や構造強度の増大などの対策が採られており、このような事例及びその対策方法が非特許文献1などに報告されている。
【0003】
また、例えば、非特許文献2などには、火力発電の分野において、ガスタービン燃焼室の音響振動を減衰させるために、ヘルムホルツ共鳴管を利用した技術が開示されている。
【0004】
【非特許文献1】NRC SPECIAL INSPECTION REPORT, 50-265/03-11
【非特許文献2】Journal of Engineering for Gas Turbines and Power, April 2004, Vol.126 P.271-275
【発明の開示】
【発明が解決しようとする課題】
【0005】
沸騰水型原子炉における主蒸気系での圧力振動の原因の一つとして、音響共鳴による振動が考えられる。つまり、原子炉圧力容器の蒸気ドームから、蒸気配管を通って高圧タービンに至る主蒸気系では、流体の流量変動に起因して圧力波が発生し、蒸気配管の系内を伝播して反射する。これによって、大振幅を持つ定在波(音響共鳴モード)が形成され、圧力振動の振幅が増幅する(つまり、共鳴振動する)可能性がある。特に、発電容量を増大した発電プラントにおいては、蒸気流量の増大に伴って流体流量の変動が大きくなるため、大きな音響共鳴を生じることがある。このような音響共鳴の現象は、発電プラントの配管構成や境界条件によって影響を受けるために発電プラントごとに振動特性が異なる。そのため、音響共鳴による振動の周波数、振幅、及び最大振幅の位置などを事前に予測することは困難である。そこで、主蒸気系や各種機器の健全性を確保するためには、主蒸気系や各種機器の設計裕度を十分大きく取って設計しておく必要がある。しかしながら、このようにして設計裕度を大きくとることにより、発電プラントの設備コストをさらに高騰させる要因となる。
【0006】
本発明は、以上のような事情に鑑みてなされたものであり、発電プラントの設備コストを増大させることなく、主蒸気系で発生する音響共鳴に伴う圧力振動を効果的に抑制することができる沸騰水型原子炉、及び沸騰水型原子炉における蒸気配管の音響振動抑制方法を提供することを目的とするものである。
【課題を解決するための手段】
【0007】
本発明の沸騰水型原子炉は、原子炉圧力容器で発生した蒸気を高圧タービンへ輸送する蒸気配管の下方において、その蒸気配管に通気するようにヘルムホルツ共鳴管を設置したことを特徴とする。つまり、ヘルムホルツ共鳴管を蒸気配管の下方に設置してドレンタンクとして用いたことを特徴とする。
【0008】
本発明の望ましい実施態様としては、ヘルムホルツ共鳴管が蒸気配管で輸送される蒸気によって生成されたドレンを貯える共鳴減衰管を備えている。そして、ヘルムホルツ共鳴管は、この共鳴減衰管に貯えられたドレンの水位を検出する水位センサと、この水位センサによって検出されたドレンの水位が所定の範囲内のレベルに維持されるようにドレンを排水する水位調節弁とを付設している。このような構成において、水位センサが共鳴減衰管に貯えられたドレンの水位を常時検出し、水位調節弁が、水位センサの検出信号に基づいて、共鳴減衰管の空間容積が蒸気配管で発生した音響共鳴を抑制できる最適容積となるように、共鳴減衰管に貯えられたドレンを排水してドレンの水位を適正なレベルに調整している。これによって、蒸気配管で発生した音響共鳴モードに起因する大きな圧力振動は、ヘルムホルツ共鳴管で生成された同一周波数の共鳴波によって抑制される。
【発明の効果】
【0009】
本発明によれば、発電プラントの設備コストを増大させることなく、主蒸気系で発生する音響共鳴に伴う圧力振動を効果的に抑制することができる。
【発明を実施するための最良の形態】
【0010】
《概要》
本発明の沸騰水型原子炉は、主蒸気系における圧力振動の主たる要因が音響共鳴であることに着目し、その音響共鳴を回避するためにヘルムホルツ共鳴管を用いる。例えば、円筒形の入口配管と共鳴減衰管から成る円筒形状のヘルムホルツ共鳴管を主蒸気系に取り付け、入口配管の断面積又は共鳴減衰管の体積(以下、これらをまとめて共鳴管形状因子という)を可変することによってヘルムホルツ共鳴管の共鳴周波数を変化させる。このようにしてヘルムホルツ共鳴管の共鳴管形状因子を微調整して変化させることにより、ヘルムホルツ共鳴管の共鳴周波数を主蒸気系で発生した音響共鳴の周波数と一致させる。これによって、主蒸気系で発生した音響共鳴の振幅(以下、音響振動という)が減衰し、結果的に主蒸気系で発生した圧力振動を低下させることができる。なお、入口配管と共鳴減衰管の形状は必ずしも円筒形に限る必要はない。
【0011】
本発明の沸騰水型原子炉では、共鳴管形状因子として共鳴減衰管の体積を変化させることにより、ヘルムホルツ共鳴管の共鳴周波数を主蒸気系の音響共鳴の周波数と一致させている。具体的には、ヘルムホルツ共鳴管を蒸気配管の下部に取り付け、そのヘルムホルツ共鳴管に溜まるドレンの量を調整することによって共鳴減衰管の体積(つまり、共鳴減衰管の空間容積)を変化させ、ヘルムホルツ共鳴管の共鳴周波数を主蒸気系の音響共鳴の周波数と一致させている。つまり、ヘルムホルツ共鳴管を蒸気配管の下部のドレンタンクとして用いることにより、そのドレンタンクのドレン量を調整して共鳴減衰管の空間体積を変化させることにより、ヘルムホルツ共鳴管の共鳴周波数と蒸気配管の音響振動の周波数とを一致させている。
【0012】
以下、図面を参照しながら本発明の実施形態による沸騰水型原子炉について詳細に説明するが、まず、音響振動を抑制させるために本発明の沸騰水型原子炉で使用されるヘルムホルツ共鳴管について説明する。
【0013】
《ヘルムホルツ共鳴管》
図1は、本発明の沸騰水型原子炉で使用するのに好適な円筒形状のヘルムホルツ共鳴管の構造を示す側面図である。図1に示すように、ヘルムホルツ共鳴管12は、円筒形の入口配管121と、やはり円筒形の共鳴減衰管122の2つの構成要素から成っている。なお、入口配管121と共鳴減衰管122の形状は、必ずしも円筒形に限る必要はない。このヘルムホルツ共鳴管12の共鳴周波数fは、次の(1)式で表わすことができる。
【0014】
f=c/(2π)×(An/(V・Ln))0.5 (1)
ここで、fは共鳴周波数(Hz)、cは音速(m/s)、Anは入口配管121の断面積(m)、Vは共鳴減衰管122の体積(m)、Lnは入口配管121の長さ(m)である。
【0015】
図1に示すように、ヘルムホルツ共鳴管12の入口配管121には、一般的に開度調整弁11が取り付けられている。この開度調整弁11の開度を調整することによって、入口配管121の断面積Anを変化させることが可能であり、(1)式から、ヘルムホルツ共鳴管12の共鳴周波数fを可変調整することができることが分かる。
【0016】
図2は、図1に示す円筒形状のヘルムホルツ共鳴管における共鳴周波数を示す特性図であり、横軸に共鳴減衰管122の長さ(Lr)、縦軸に共鳴周波数(f)を示している。なお、この特性図では入口配管121の径Dnをパラメータとしている。図2から分かるように、入口配管121の径Dn、入口配管121の長さLn、共鳴減衰管122の径Dr及び共鳴減衰管122の長さLr(つまり、共鳴減衰管122の体積V)などによって、ヘルムホルツ共鳴管12の共鳴周波数fは変化している。例えば、入口配管121の径Dnを変化させることによって共鳴周波数fは変化している。したがって、入口配管121に設けた開度調整弁11の開度を変化させることによって、等価的に入口配管121の径Dnを変化させ、ヘルムホルツ共鳴管12の共鳴周波数fを変化させることができる。通常、配管径に比べて音響共鳴モードの音波長は長いため、共鳴周波数fは、開口部の形状によらず、入口配管121の開口面積に依存する。そのため、開度調整弁11の型式に依存されることなく、どのような型式の弁を用いてもヘルムホルツ共鳴管12の共鳴周波数fを調整することができる。
【0017】
図2に示した例では、入口配管121の径Dnをパラメータとした共鳴減衰管122の長さLrに対する3つの共鳴周波数特性を示しており、入口配管121の径Dnを絞ることで、共鳴周波数fは低くなっている。すなわち、1つのヘルムホルツ共鳴管12において、開度調整弁11の開度を変化させれば、等価的に入口配管121の径Dnを変化させることができ(つまり、入口配管121の断面積Anを変化させることができ)、ヘルムホルツ共鳴管12の共鳴周波数fを可変調整できることを示している。
【0018】
また、(1)式から分かるように、入口配管121に開度調整弁11を設けなくても、言い換えれば、入口配管121の径Dn(つまり、入口配管121の断面積An)を一定にしても、共鳴減衰管122の径Dr又は長さLrを変化させることによって(つまり、共鳴減衰管122の体積Vを変化させることによって)、ヘルムホルツ共鳴管12の共鳴周波数fを変化させることができる。そこで、本発明の沸騰水型原子炉で使用するヘルムホルツ共鳴管12では、共鳴減衰管122に溜まるドレンの量を変化させることによって共鳴減衰管122の体積V(つまり、空間容積)を変化させ、その結果、ヘルムホルツ共鳴管12の共鳴周波数fを蒸気配管の音響共鳴の周波数と一致させて主蒸気系における圧力振動を抑制している。以下、蒸気配管の下部にヘルムホルツ共鳴管12を取り付け、その共鳴減衰管122に溜まったドレンの量を調整することによって主蒸気系の圧力振動振幅を抑制する幾つかの実施形態について説明する。
【0019】
《第1の実施形態》
図3は、本発明の第1の実施形態による沸騰水型原子炉の主蒸気系を示す構成図である。原子炉圧力容器1の下部には、ウランの核分裂によって蒸気2を発生させる冷却水が循環するシュラウドなどが構成されているがこの図では省略されている。原子炉圧力容器1の内部で発生した蒸気2は、蒸気乾燥器3の内部の波板4で水分が除去された後、原子炉圧力容器1の蓋5で囲まれた蒸気ドーム6内へ流入する。波板4で除去された水分は、ドレン管7を通って蒸気乾燥器3の下方に排出される。一方、蒸気2は、ノズル8から蒸気配管9を通って高圧タービン10に流入して図示しない発電機を高速回転させる。
【0020】
また、蒸気配管9の下部には、図1で示した構成のヘルムホルツ共鳴管12が設置されている。すなわち、蒸気配管9の下部の開口部とヘルムホルツ共鳴管12の入口配管121とを連通(通気)させることにより、蒸気配管9に対してヘルムホルツ共鳴管12を設置する。このようにしてヘルムホルツ共鳴管12を蒸気配管9の下部に設置することにより、共鳴減衰管122を主蒸気ライン(蒸気配管9)のドレンタンクとして用いる。なお、図3のヘルムホルツ共鳴管12では、図1に示した開度調整弁11は省略されているが、本実施形態においてヘルムホルツ共鳴管12を蒸気配管9の下部に設置する場合は、開度調整弁11はなくてもよい。もちろん、ヘルムホルツ共鳴管12(入口配管121)に開度調整弁11が存在していても構わない。
【0021】
また、ヘルムホルツ共鳴管12の底部にはドレン管21が設けられ、そのドレン管21は水位調節弁22を介して図示しないドレンタンクにまで配管されている。さらに、ヘルムホルツ共鳴管12の側部には、ヘルムホルツ共鳴管12に溜まったドレン122aの上限水位(HWL)と下限水位(LWL)を検出して電気信号を発信する水位発信器(LT)23が設けられている。
【0022】
さらに、水位発信器(LT)23の電気信号を空気圧信号に変換するための電気/圧力変換器(E/P)24が設けられ、その電気/圧力変換器(E/P)24から出力された空気圧信号によって水位調節弁22を開閉させるダイアフラム25が設けられている。実際にはダイアフラム25と水位調節弁22とによってダイアフラム弁が構成されている。
【0023】
次に、図3のように構成された沸騰水型原子炉の蒸気配管9において音響共鳴が発生した場合、ヘルムホルツ共鳴管12によってその音響共鳴を抑制する方法について説明する。
【0024】
蒸気ドーム6から高圧タービン10に至る蒸気配管9の下方にヘルムホルツ共鳴管12が設置されている。したがって、蒸気配管9を通過する蒸気2によって生成されたドレン122aは、ヘルムホルツ共鳴管12の共鳴減衰管122に貯えられる。水位発信器(LT)23がドレン122aの上限水位(HWL)を検出すると、電気/圧力変換器(E/P)24を介してダイアフラム25を駆動して水位調節弁22を開にしてドレン122aを排水する。水位発信器(LT)23がドレン122aの下限水位(LWL)を検出すると、水位調節弁22を閉にしてドレン122aの排水を止める。このような動作によって、共鳴減衰管122の空間体積は、蒸気配管9を通過する蒸気2によって発生する音響共鳴を抑制するのに最適な体積となるように維持される。
【0025】
ヘルムホルツ共鳴管12による音響共鳴の抑制方法についてさらに詳しく説明する。蒸気配管9には、常に蒸気2が流通しているので、ヘルムホルツ共鳴管12の共鳴減衰管122には常時ドレンが溜まっている。また、共鳴減衰管122に溜まったドレンの水位は水位発信器(LT)23によって常に検出される。
【0026】
一方、沸騰水型原子炉の運転時において蒸気配管9で発生する音響共鳴の周波数とヘルムホルツ共鳴管12の共鳴周波数とを一致させて音響共鳴を回避させるように、共鳴減衰管122の最適な体積Vをあらかじめ求めておく。そして、共鳴減衰管122の最適な体積Vがその共鳴減衰管122の空間容積となるようにドレン122aの基準水位を求め、そのドレン122aの基準水位に対して、音響共鳴の減衰に好適な範囲の上限水位(HWL)と下限水位(LWL)を設定し、水位発信器(LT)23が上限水位(HWL)と下限水位(LWL)を検出できるように設定しておく。もちろん、水位発信器(LT)23による水位検出の設定レベルは任意に設定可能である。
【0027】
上記のようにドレン水位の検出レベルを設定した後、沸騰水型原子炉の運転中において、ヘルムホルツ共鳴管12における共鳴減衰管122のドレン水位が音響共鳴の減衰に好適な範囲の上限水位(HWL)に達したら、水位発信器(LT)23が電気信号を発生する。すると、水位発信器(LT)23の電気信号は電気/圧力変換器(E/P)24へ送信されて空気圧信号に変換され、その空気圧信号によってダイアフラム25を動作させて水位調節弁22を開動作させる。これによって、共鳴減衰管122に溜まったドレン122aはドレン管21を介してドレンタンク(図示せず)へ排水される。
【0028】
共鳴減衰管122に溜まったドレン122aが排水されて、ドレン122aの水位が音響共鳴の減衰に好適な範囲の下限水位(LWL)に達すると、水位発信器(LT)23は電気信号を停止させるので、電気/圧力変換器(E/P)24は空気圧信号を停止させる。これによって、ダイアフラム25は動作を停止するので水位調節弁22は閉の方向に動作して、共鳴減衰管122に溜まったドレン122aの排水を停止する。このようにして、共鳴減衰管122に溜まったドレン122aは音響共鳴の減衰に好適な範囲の下限水位(LWL)まで排水される。
【0029】
一方、主蒸気ラインである蒸気配管9からは連続的にドレン122aが発生して共鳴減衰管122に溜まるので、上記のような上限水位(HWL)と下限水位(LWL)の水位制御によって共鳴減衰管122に溜まったドレン122aが適宜に排水され、共鳴減衰管122の空間体積は常に音響共鳴を回避するのに最適な体積V1に維持される。
【0030】
したがって、図3に示す沸騰水型原子炉の構成において、蒸気ドーム6から、ノズル8、蒸気配管9を通り、高圧タービン10に至る主蒸気系において、共鳴周波数fを持つ音響共鳴モードが形成された場合、共鳴減衰管122に溜まったドレン122aの量を調整して共鳴減衰管122の体積V1を最適値に維持することにより、ヘルムホルツ共鳴管12の共鳴周波数fを音響共鳴モードの周波数と等しくして主蒸気系の音響共鳴モードの振幅を減衰させることができる。
【0031】
つまり、主蒸気系内において、圧力波が伝播したり反射したりして増幅すると、各種機器の不具合を生じせしめる所定以上の大きな振幅を持つ音響共鳴モードが形成される。この音響共鳴モードによってヘルムホルツ共鳴管12の入口の圧力振動が変動すると、そのヘルムホルツ共鳴管12の内部に向かう流速に変動が生じる。そこで、共鳴減衰管122のドレン122aの量を調整して共鳴減衰管122の体積Vを最適値に維持して、ヘルムホルツ共鳴管12の共鳴周波数fと音響共鳴モードの周波数とを一致させると、ヘルムホルツ共鳴管12の入口の流速変動が大きくなるため、ヘルムホルツ共鳴管12が主蒸気系内の音響エネルギーを吸収し、音響共鳴モードによる圧力振動を効果的に減衰させることができる。したがって、主蒸気系内の圧力振動の大きな位置にヘルムホルツ共鳴管12の入口を設けることにより、音響共鳴モードを効果的に減衰させることができる。例えば、蒸気配管9のバルブ(図示せず)の近傍などで大きな圧力振動が生じた場合には、その近傍の蒸気配管9の位置にヘルムホルツ共鳴管12を設置することによって圧力振動を抑制し、蒸気配管9に加わる圧力変動を低減させて信頼性の高い運転を維持することができる。
【0032】
本実施の形態では、共鳴減衰管に溜まったドレンの排水によってヘルムホルツ共鳴管を最適な体積に設定することができる。したがって、沸騰水型原子炉の主蒸気系やヘルムホルツ共鳴管に新たな改造作業を行うことなく、ヘルムホルツ共鳴管を最適な体積に調整することができるので、主蒸気系で発生した音響共鳴に伴う圧力振動の抑制を容易に実現することが可能となる。これによって、発電プラントの運転管理を常に最適状態に維持することが可能な沸騰水型原子炉、及び沸騰水型原子炉における蒸気配管の音響振動抑制方法を提供することができる。
【0033】
なお、上記の実施の形態では、共鳴減衰管122のドレン122aの量を調整して共鳴減衰管122の体積Vを最適値に維持し、ヘルムホルツ共鳴管12の共鳴周波数fと音響共鳴モードの周波数とを一致させたが、その変形例として、ドレン122aが溜まっていない共鳴減衰管122の正味の体積を、音響共鳴モードの周波数とヘルムホルツ共鳴管12の共鳴周波数fを一致させる最適値としてもよい。つまり、ヘルムホルツ共鳴管12を蒸気配管9の下部に設けて共鳴減衰管122をドレンタンクとして用いる考え方は、図3に示す第1の実施形態と同じであるが、共鳴減衰管122の下部のドレン管21からドレン122aを垂れ流しで排出させる。これによって、共鳴減衰管122にドレン122aが溜まっていないときの共鳴減衰管122の体積を最適値として、ヘルムホルツ共鳴管12の共鳴周波数fと音響共鳴モードの周波数とを一致させれば、前述と同様に、蒸気配管9で発生する音響共鳴を抑制することができる。
【0034】
また、上記の実施形態では、ダイアフラム25と水位調節弁22からなるダイアフラム弁を用いて共鳴減衰管122に溜まったドレン122aの量を上限水位(HWL)と下限水位(LWL)の間に調整したが、このようなドレン122aの水位調整はダイアフラム弁以外でも実現することができる。例えば、水位調節弁22に電磁弁を用い、共鳴減衰管122に溜まったドレン122aの量が上限水位(HWL)に達したら、水位発信器(LT)23からの電気信号によって電磁弁をONにしてドレン122aを排水させ、ドレン122aの量が下限水位(LWL)に達したら、水位発信器(LT)23からの電気信号を止めて電磁弁をOFFにしてドレン122aの排水を停止させるようにしてもよい。このような電磁弁を用いることによって電気/圧力変換器(E/P)24が不要となるなどのメリットがある。
【0035】
《第2の実施形態》
図4は、本発明の第2の実施形態による沸騰水型原子炉の主蒸気系を示す構成図である。図4に示す第2の実施形態による沸騰水型原子炉の構成が、図3に示す第1の実施形態による沸騰水型原子炉の構成と異なるところは、ヘルムホルツ共鳴管12の入口配管121に開度調整弁11を設け、圧力センサ13、14の信号によって制御を行う制御装置15により開度調整弁11を制御するように構成された点である。もちろん、ヘルムホルツ共鳴管12をドレンタンクとして蒸気配管9の下部に設けたところは、第1の実施形態と同じである。したがって、第1の実施形態と重複する説明は可能な限り省略する。
【0036】
図4において、原子炉圧力容器1の内部で発生した蒸気2は、蒸気乾燥器3の内部の波板4で水分を除去された後、原子炉圧力容器1の蓋5で囲まれた蒸気ドーム6内に流入する。除去された水分はドレン管7を通って蒸気乾燥器3の下方に排出される。一方、蒸気2は、ノズル8から蒸気配管9を通って高圧タービン10へ流入して図示しない発電機を高速回転させる。
【0037】
また、蒸気配管9の下部には、開度調整弁11を介してヘルムホルツ共鳴管12が、ドレンタンクとして設置されている。このヘルムホルツ共鳴管12に溜まったドレンは、水位発信器(LT)23、電気/圧力変換器(E/P)24、ダイアフラム25、及び水位調節弁22による検出と制御によってドレン管21から排出され、ドレンの水位は上限水位(HWL)と下限水位(LWL)の間に維持されることは、前述の第1の実施形態と同じである。
【0038】
さらに、図4に示す第2の実施形態の沸騰水型原子炉では、蒸気ドーム6からノズル8、蒸気配管9を通って高圧タービン10に至るまでの蒸気相の空間(主蒸気系)には、圧力センサ13、14が取り付けられている。ここで、圧力センサ13、14は、どちらか単独でもよいし、あるいは、それぞれ複数ずつ設置しても構わない。圧力センサ13、14からの圧力振動の信号は、制御装置15内の信号処理部で処理され、開度調整弁11の開度の制御に使用される。
【0039】
すなわち、制御装置15は、圧力センサ13、14の圧力振動の信号を入力して、圧力センサ13、14の圧力振動の振幅が最小になるように開度調整弁11の開度を最適に制御する。例えば、開度調整弁11を微小に開いたとき、圧力センサ13、14の圧力振動が減少する場合は、さらに開度調整弁11を微小に開く。また、圧力センサ13、14の圧力振動が増加する場合は、開度調整弁11を反対に閉じる方向に制御する。このような操作を繰り返すことにより、開度調整弁11の開度を制御して(つまり、ヘルムホルツ共鳴管12の入口配管121の断面積Anを制御して)、蒸気配管9の音響共鳴を抑制する。これによって、圧力センサ13、14の圧力振動の振幅を最小にすることができる。
【0040】
図5は、本実施の形態に用いるのに好適な制御装置の処理機能を示すブロック図である。制御装置15は、信号処理部151と制御部152とによって構成される。信号処理部151では、圧力センサ13、14から入力された圧力振動の振幅を記憶部1511で記憶させ、開度調整弁11の操作前後の圧力センサ13、14の圧力振動の振幅を、比較部1512で比較する。また、制御部152は、比較部1512の比較結果に基づいて、開度調整弁11への新たな開度指令を決定し、開度調整弁11へ制御信号を出力する。
【0041】
このような機能により、主蒸気系の圧力振動が小さくなる方向へヘルムホルツ共鳴管12における入口配管121の開度調整弁11の開度を制御して、ヘルムホルツ共鳴管12における入口配管121の実質的な開口面積(つまり、入口配管121の断面積An)を調整する。これによって、ヘルムホルツ共鳴管12の共鳴周波数fが、主蒸気系に発生した共鳴振動の周波数に近づいて、主蒸気系の音響共鳴(圧力振動)を減衰させることができる。
【0042】
本実施形態では、ヘルムホルツ共鳴管12が蒸気配管9の下部に設置されており、この場合も、主蒸気系内の圧力振動の大きな位置にヘルムホルツ共鳴管12の入口配管121を設けることにより、音響共鳴モードを効果的に減衰させることができる。この実施形態は、蒸気配管9の圧力振動が大きい場合に有効である。例えば、ノズル8で大きな圧力振動が生じた場合には、ノズル8の近傍にヘルムホルツ共鳴管12を設置することにより、蒸気配管9の圧力振動を抑制して主蒸気系全体の圧力振動を小さくすることができる。特に、沸騰水型原子炉の場合には、ノズル8の近傍には安全弁が設置されているため、増出力時にこの実施形態の構成を適用する場合には、流路面積の広い大型の大容量安全弁を用いることにより増出力前に比べて弁数を削減し、余った弁座を使用してヘルムホルツ共鳴管を設置するなどの手段も可能である。
【0043】
本実施形態のように、ヘルムホルツ共鳴管12に溜まったドレンの量を制御して共鳴減衰管122の体積Vを最適値に調整すると共に、入口配管121の開度調整弁11の開度を制御して入口配管121の断面積Anを最適値に調整することにより、主蒸気系の音響共鳴による圧力振動をさらに高精度に抑制することが可能となる。
【0044】
《第3の実施形態》
図6は、本発明の第3の実施形態による沸騰水型原子炉の主蒸気系を示す構成図である。第1の実施形態及び第2の実施形態と重複する説明は省略する。蒸気配管9の下部には、開度調整弁11Aを介してヘルムホルツ共鳴管12Aが設置され、かつ、開度調整弁11Bを介してヘルムホルツ共鳴管12Bが設置されている。これらのヘルムホルツ共鳴管12A、12Bがドレンタンクとして構成されていることは、前述の第1の実施形態(図3)及び第2の実施形態(図4)と同じである。つまり、ヘルムホルツ共鳴管12A、12Bには、図3の第1の実施形態又は図4の第2の実施形態の構成と同様に、ヘルムホルツ共鳴管12A、12Bのドレン水位を最適なレベルに保持するために、ヘルムホルツ共鳴管12A、12Bに溜まったドレンを排出するドレン配管系統が設けられているが、それらのドレン配管系統については省略されている。あるいは、ヘルムホルツ共鳴管12A、12Bの底部にドレンを垂れ流すためのドレン管を設けてもよい。
【0045】
また、蒸気ドーム6からノズル8、蒸気配管9を通って高圧タービン10に至るまでの蒸気相の空間(主蒸気系)には、圧力センサ13、14A、14Bが取り付けられている。ここで、圧力センサ13、14A、14Bは、どれか単独でも、あるいは、3箇所のうち2箇所でも、あるいは、それぞれ複数個の設置であっても構わない。これらの圧力センサ13、14A、14Bからの圧力振動の信号は、制御装置15で処理され、開度調整弁11A、11Bの開度の制御に使用される。なお、ヘルムホルツ共鳴管12A、12Bの構成は、第1の実施形態及び第2の実施形態と同様である。
【0046】
本実施形態では、蒸気配管9に蒸気ヘッダ16が設置されている。この蒸気ヘッダ16は、複数の並列配管で構成された蒸気配管9の各配管の均圧化、あるいは他の配管への分岐を可能とする分配器的な役割を担って設けられている。このように、蒸気ヘッダ16が設置されている場合には、蒸気ヘッダ16の前後で、音響共鳴モードの周波数位相が異なっている可能性がある。そこで、蒸気ヘッダ16の前後の蒸気配管9のそれぞれの位置に、ヘルムホルツ共鳴管12Aとヘルムホルツ共鳴管12Bを設けることにより、蒸気ヘッダ16の前後において音響共鳴モードを効果的に減衰させることができる。例えば、蒸気ヘッダ16で大きな圧力振動が生じた場合には、蒸気ヘッダ16の前後のヘルムホルツ共鳴管12A、12Bの共鳴周波数と音響共鳴モードの周波数とを一致させることにより、蒸気配管9の全域において圧力振動を抑制し、主蒸気系全体の圧力振動を抑えることができる。
【0047】
つまり、制御装置15は、圧力センサ13、14A、14Bの圧力振動の信号を入力し、それらの圧力振動の振幅が最小になるように、開度調整弁11A、11Bの開度が最適となるように制御する。例えば、開度調整弁11Aを微小に開いて圧力センサ13、14A、14Bの圧力振動が減少する場合は、さらに開度調整弁11Aを微小に開く。また、圧力センサ13、14A、14Bの圧力振動が増加する場合は、開度調整弁11Aを反対に閉じる方向に制御する。開度調整弁11A、11Bについて、このような操作を繰り返すことにより、開度調整弁11A、11Bの開度を制御して、圧力センサ13、14A、14Bの圧力振動の振幅を最小にすることができる。
【0048】
なお、制御装置15の具体的な構成は、図5と同じであるが、第3の実施形態の場合は、制御部152が次のように動作する。すなわち、圧力センサ13、14A、14Bからの圧力振動の振幅を記憶部1511で記憶させ、開度調整弁11A、11Bを操作する前後の圧力センサ13、14A、14Bの圧力振動の振幅を、それぞれ比較部1512で比較する。そして、その比較結果から開度調整弁11A、11Bの新たな開度を決定し、開度調整弁11A、11Bを制御する。
【0049】
図6に示す第3の実施形態の沸騰水型原子炉の場合も、ヘルムホルツ共鳴管12A、12Bの入口配管121が、蒸気配管9の圧力振動の大きな位置にあれば、音響共鳴モードをより効果的に減衰させることができる。そこで、圧力センサ13、14A、14Bからの圧力振動の信号を用いて制御装置15を制御して開度調整弁11A、11Bの開度を決定すれば、次のようにしてより効果的に音響共鳴を減衰させることができる。
【0050】
すなわち、蒸気配管9で発生している音響振動モードを計算し、圧力振動の振幅の計算結果が大きい位置に設けられたヘルムホルツ共鳴管12A又は12Bに対応する開度調整弁11A又は11Bから順に新たな開度を決定し、当該開度調整弁から順に制御を行う。音響振動モードは、圧縮性流体の方程式もしくは音波方程式を基礎式として適当な境界条件を用いて数値計算することにより求められ、蒸気配管9の各位置における圧力振動の振幅を得ることができる。この音響振動モードから、開度調整弁11A、11Bの位置における圧力振動振幅を求め、圧力振動の大きな方の開度調整弁を優先してこれから順に制御を行う。このような方法を用いることにより、より短時間に最適な開度調整弁11A、11Bの開度を求めて圧力振動を減衰させることが可能となる。
【0051】
つまり、第3の実施形態では、ヘルムホルツ共鳴管12に溜まったドレンの量を制御して共鳴減衰管122の体積Vを最適値に調整すると共に、蒸気ヘッダ16の前後においてヘルムホルツ共鳴管12A、12Bの開度調整弁11A、11Bの開度(断面積An)を個別に最適値に調整することにより、蒸気配管9の音響共鳴による圧力振動をさらに高精度に抑制することが可能となる。
【0052】
《第4の実施形態》
図7は、本発明の第4の実施形態による沸騰水型原子炉の主蒸気系を示す構成図である。この実施形態では、蒸気配管9の下部に複数の開度調整弁11を有するヘルムホルツ共鳴管12が設置されている。このヘルムホルツ共鳴管12には、図3の第1の実施形態又は図4の第2の実施形態の構成と同様に、ヘルムホルツ共鳴管12のドレン水位を最適なレベルに保持するために、ヘルムホルツ共鳴管12に溜まったドレンを排出するドレン配管系統が設けられているが、それらのドレン配管系統については省略されている。あるいは、ヘルムホルツ共鳴管12の底部にドレンを垂れ流すためのドレン管を設けてもよい。
【0053】
また、蒸気ドーム6からノズル8、蒸気配管9を通って高圧タービン10に至るまでの蒸気相の空間(主蒸気系)には、圧力センサ13、14が取り付けられている。ここで、圧力センサ13、14は、どちらか単独でも、あるいは、それぞれ複数個設置されていても構わない。圧力センサ13、14からの圧力振動の信号は、制御装置15内の信号処理部で処理され、複数の開度調整弁11の開度の制御に使用される。制御装置15の構成は、第1の実施の形態で述べた図5の構成と同様であるので、重複する説明は省略する。
【0054】
図8は、本実施形態で使用されるヘルムホルツ共鳴管12を示す摸式側面図である。蒸気配管9の下部に連結する複数の入口配管121に、それぞれ開度調整弁11が設けられており、これらの入口配管121を単一の共鳴減衰管122で結合している。複数の入口配管の断面積の和をAnとし、ドレンの最適水位によって決定される共鳴減衰管122の体積をVとすることにより、ヘルムホルツ共鳴管12の共鳴周波数fは、前述の(1)式で求められ、その共鳴周波数fを蒸気配管9の音響共鳴の周波数と一致させることにより、蒸気配管9で発生する圧力振動を抑制することができる。なお、共鳴減衰管122は、図8に示すような配管に限ることはなく、蒸気配管9を囲むように配置したアニュラス状の容器でもよい。
【0055】
この実施形態では、蒸気配管9の周囲にスペースがない場合でも蒸気配管9に沿ってヘルムホルツ共鳴管12をコンパクトに配置することができる。また、ヘルムホルツ共鳴管12には、複数の入口配管121を有するため、それらの入口配管121の断面積の和Anを大きくとることができるので、蒸気配管9で発生する圧力振動の減衰率を大きくすることが可能となる。例えば、図8に示すような形状のヘルムホルツ共鳴管12を用いて沸騰水型原子炉の増出力時に適用すれば、蒸気の流路面積が広い大型の大容量安全弁を用いることによって増出力前に比べて弁の数を削減することができるので、余った複数の弁座を使用してヘルムホルツ共鳴管を設置するなどの手段も可能である。
【0056】
《まとめ》
以上説明した第2の実施形態から第4の実施形態までの沸騰水型原子炉は、ヘルムホルツ共鳴管12が蒸気配管9の下部にドレンタンクとして設置され、共鳴減衰管122に溜まったドレン122aの水位によって共鳴減衰管122の空間容積(体積V)を制御すると共に、入口配管121に取り付けられた開度調整弁11の開度(断面積An)を制御することによって、ヘルムホルツ共鳴管12の共鳴周波数fを蒸気配管の音響共鳴の周波数と一致させている。これによって、より効果的に音響共鳴モードによる圧力振動を抑制することができる。
【0057】
また、第2の実施形態から第4の実施形態までの沸騰水型原子炉においては、ヘルムホルツ共鳴管12の入口配管121には全て開度調整弁11が取り付けられ、制御装置15によってそれらの開度調整弁11の開度が制御される。しかし、一旦、開度調整弁11の開度が決まれば、その後は開度調整弁11の弁開度を固定して制御装置15を無制御状態にしてもよいし、制御装置15を取り外してもよい。
【0058】
図9は、本発明による各実施形態の効果を説明するための周波数対音圧を示す特性図であり、ヘルムホルツ共鳴管を用いた場合と用いない場合の代表的な試験結果を示している。図の縦軸は蒸気乾燥器表面の音圧であり、ヘルムホルツ共鳴管がない場合には、低周波の特定の周波数で圧力振動ピークが生じる。図には、この低周波の圧力振動ピークにヘルムホルツ共鳴管の共鳴周波数を一致させた場合を示しており、ヘルムホルツ共鳴管により当該圧力振動ピークを有効に減衰できることがわかる。
【図面の簡単な説明】
【0059】
【図1】本発明の沸騰水型原子炉で使用するのに好適な円筒形状のヘルムホルツ共鳴管の構造を示す側面図である。
【図2】図1に示すヘルムホルツ共鳴管の寸法に対する共鳴周波数を示す特性図である。
【図3】本発明における第1の実施形態の沸騰水型原子炉の主蒸気系を示す構成図である。
【図4】本発明における第2の実施形態の沸騰水型原子炉の主蒸気系を示す構成図である。
【図5】本発明の各実施形態で用いられる制御装置の処理機能を示すブロック図である。
【図6】本発明における第3の実施形態の沸騰水型原子炉の主蒸気系を示す構成図である。
【図7】本発明における第4の実施形態の沸騰水型原子炉の主蒸気系を示す構成図である。
【図8】本発明における第4の実施形態で用いられるヘルムホルツ共鳴管を示す摸式側面図である。
【図9】本発明における各実施形態の効果を説明するための周波数対音圧を示す特性図である。
【符号の説明】
【0060】
1 原子炉圧力容器
2 蒸気
3 蒸気乾燥器
4 波板
5 原子炉圧力容器蓋
6 蒸気ドーム
7 ドレン管
8 ノズル
9 蒸気配管
10 高圧タービン
11 開度調整弁
12,12A,12B ヘルムホルツ共鳴管
121 入口配管
122 共鳴減衰管
122a ドレン
13,14 圧力センサ
15 制御装置
151 信号処理部
1511 記憶部
1512 比較部
152 制御部
16 蒸気ヘッダ
21 ドレン管
22 水位調節弁
23 水位発信器
24 電気/圧力変換器
25 ダイアフラム




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013