Warning: copy(.htaccess): failed to open stream: Permission denied in /home/jp321/public_html/header.php on line 8
再生装置、再生方法、ホログラム記録媒体 - ソニー株式会社
米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 写真;映画 -> ソニー株式会社

発明の名称 再生装置、再生方法、ホログラム記録媒体
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−47759(P2007−47759A)
公開日 平成19年2月22日(2007.2.22)
出願番号 特願2006−181420(P2006−181420)
出願日 平成18年6月30日(2006.6.30)
代理人 【識別番号】100086841
【弁理士】
【氏名又は名称】脇 篤夫
発明者 寺岡 善之 / 阿部 嗣弘 / 野口 辰己
要約 課題
簡易な構成で安定にデータ読出が可能な再生装置の実現。

解決手段
再生装置にはスキャン機構を設けず、ユーザーが再生装置を持ってホログラム記録媒体上を移動させることで、各要素ホログラムを読み取っていく手動スキャン方式を採用する。そして再生装置は、各要素ホログラムからの読出データについて、記憶手段に記憶されていなければ、それを記憶していく動作を行う。そして記憶手段に所定量の要素ホログラムの読出データが揃った時点で再生データを再構築して生成する。つまり、各要素ホログラムの読み出し順序を規定しないことと、或る要素ホログラムの読出データが重複して読み出されることを許容すること手動スキャンに対応して適正な再生ができるようにする。
特許請求の範囲
【請求項1】
画像化したデータの物体光と参照光とを干渉させ、干渉縞によって上記データが要素ホログラムとして記録されたホログラム記録媒体からデータを再生する再生装置として、
上記ホログラム記録媒体に再生用参照光を照射する参照光照射手段と、
上記再生用参照光が照射されたホログラム記録媒体の上記要素ホログラムから得られる再生像を検出し、上記再生像から上記要素ホログラムの読出データを得るデータ読出手段と、
上記読出データが記憶される記憶手段と、
上記データ読出手段にて得られた読出データが上記記憶手段に未記憶と判断される場合に、上記読出データを上記記憶手段に記憶されるように制御する読出データ格納制御手段と、
所定量の読出データが上記記憶手段に記憶された場合に、上記記憶手段に記憶されている読出データを用いて再生データを生成する再生データ生成手段と、
を備えることを特徴とする再生装置。
【請求項2】
使用者が再生装置を移動させ、ホログラム記録媒体に対する相対位置を変位させることにより、上記参照光照射手段からの再生用参照光が、上記ホログラム記録媒体上の各要素ホログラムに照射されていくとともに、
再生用参照光が照射された要素ホログラムの読出データが上記データ読出手段により得られることを特徴とする請求項1に記載の再生装置。
【請求項3】
画像化したデータの物体光と参照光とを干渉させ、干渉縞によって上記データが要素ホログラムとして記録されたホログラム記録媒体に対する再生方法として、
上記ホログラム記録媒体に再生用参照光を照射し、上記再生用参照光が照射されたホログラム記録媒体の上記要素ホログラムから得られる再生像を検出し、上記再生像から上記要素ホログラムの読出データを得るデータ読出ステップと、
上記データ読出ステップで得られた読出データが記憶手段に記憶されているか否かを判断する判断ステップと、
上記判断ステップで、上記データ読出ステップで得られた読出データが上記記憶手段に記憶されてないと判断された場合に、上記読出データを上記記憶手段に記憶する読出データ格納制御ステップと、
所定量の読出データが上記記憶手段に記憶された場合に、上記記憶手段に記憶されている読出データを用いて再生データを生成する再生データ生成ステップと、
を備えたことを特徴とする再生方法。
【請求項4】
画像化したデータの物体光と参照光とを干渉させ、干渉縞によって上記データを要素ホログラムとして記録するホログラム記録媒体であって、
同一のデータ内容の要素ホログラムが複数記録されていることを特徴とするホログラム記録媒体。
【請求項5】
同一のデータ内容の複数の要素ホログラムが位置的にまとめられて記録されていることを特徴とする請求項4に記載のホログラム記録媒体。
【請求項6】
同一のデータ内容の複数の要素ホログラムが、縦方向及び/又は横方向に隣り合うようにまとめられて記録されていることを特徴とする請求項5に記載のホログラム記録媒体。
【請求項7】
同一のデータ内容の複数の要素ホログラムが斜め方向に隣り合うようにまとめられて記録されていることを特徴とする請求項5に記載のホログラム記録媒体。
【請求項8】
同一のデータ内容の複数の要素ホログラムが、密接した状態で位置的にまとめられて記録されていることを特徴とする請求項4に記載のホログラム記録媒体。
【請求項9】
同一のデータ内容の複数の要素ホログラムが、縦方向及び/又は横方向に密接した状態でまとめられて記録されていることを特徴とする請求項8に記載のホログラム記録媒体。
【請求項10】
同一のデータ内容の複数の要素ホログラムが密接した状態で一方向に並ぶように記録されていることを特徴とする請求項8に記載のホログラム記録媒体。
【請求項11】
同一のデータ内容の複数の要素ホログラムが斜め方向に密接した状態でまとめられて記録されていることを特徴とする請求項8に記載のホログラム記録媒体。
発明の詳細な説明
【技術分野】
【0001】
本発明はデータに応じた画像の物体光と参照光とを干渉させ、干渉縞によってデータを記録するホログラム記録媒体と、その再生装置、再生方法に関するものである。
【背景技術】
【0002】
【特許文献1】特許第3596174号公報
【特許文献2】特許第3498878号公報
【0003】
物体光と参照光の干渉縞によって各種データを記録するホログラム記録媒体が知られている。そしてホログラム記録媒体は、記録密度を飛躍的に向上させ、著しい大容量化が可能であることも知られており、例えばコンピュータデータや、オーディオやビデオ等のAV(Audio-Visual)コンテンツデータなどに対する大容量のストレージメディアとして有用であると考えられている。
【0004】
ホログラム記録媒体にデータを記録する際には、データを二次元ページデータとして画像化する。そして液晶パネル等に画像化したデータを表示させ、その液晶パネルを透過した光を物体光、つまり二次元ページデータの像となる物体光をホログラム記録媒体に照射する。加えて、所定の角度から参照光をホログラム記録媒体に照射する。このとき物体光と参照光によって生ずる干渉縞が、ドット状や短冊状などの1つの要素ホログラムとして記録されることになる。つまり1つの要素ホログラムは、1つの二次元ページデータを記録したものとなる。
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、例えばシート状等のホログラムメモリを考え、コンピュータデータやAVコンテンツデータなどを記録し、一般ユーザーがホログラムリーダとしての再生装置を用いて、ホログラムメモリに記録されたデータを取得できるようにするシステムを考える。
シート状のホログラムメモリとは、メディア表面としての平面上に多数の要素ホログラムを敷き詰めるように記録するものであり、このメディア表面に対してホログラムリーダを対向させて、各要素ホログラムとして記録されたデータを読み取っていくようにするものである。
このようなシステムを考えた場合、その使用形態やシステム形態に応じて次のような点を考慮することが必要となる。
・ホログラムリーダのユーザーへの安価な提供及びそのための簡易な装置構成。
・ホログラムリーダの安定したデータ再生性能。
・ホログラムリーダによる読取の際の使用性の向上。
・ホログラムメモリとしてコンテンツデータ等の記憶のための或る程度の容量の維持。
【0006】
本発明では、これらの観点を考慮しつつ、例えばユーザーがホログラム記録媒体からデータ取得できるシステムにおいて好適な再生装置、再生方法、及びホログラム記録媒体を実現することを目的とする。
【課題を解決するための手段】
【0007】
本発明の再生装置は、画像化したデータの物体光と参照光とを干渉させ、干渉縞によって上記データが要素ホログラムとして記録されたホログラム記録媒体からデータを再生する再生装置である。そして、上記ホログラム記録媒体に再生用参照光を照射する参照光照射手段と、上記再生用参照光が照射されたホログラム記録媒体の上記要素ホログラムから得られる再生像を検出し、上記再生像から上記要素ホログラムの読出データを得るデータ読出手段と、上記読出データが記憶される記憶手段と、上記データ読出手段にて得られた読出データが上記記憶手段に未記憶と判断される場合に、上記読出データを上記記憶手段に記憶されるように制御する読出データ格納制御手段と、所定量の読出データが上記記憶手段に記憶された場合に、上記記憶手段に記憶されている読出データを用いて再生データを生成する再生データ生成手段とを備える。
またこの再生装置は、使用者が再生装置を移動させ、ホログラム記録媒体に対する相対位置を変位させることにより、上記参照光照射手段からの再生用参照光が、上記ホログラム記録媒体上の各要素ホログラムに照射されていき、再生用参照光が照射された要素ホログラムの読出データが上記データ読出手段により得られるものとする。
【0008】
本発明の再生方法は、ホログラム記録媒体に再生用参照光を照射し、上記再生用参照光が照射されたホログラム記録媒体の上記要素ホログラムから得られる再生像を検出し、上記再生像から上記要素ホログラムの読出データを得るデータ読出ステップと、上記データ読出ステップで得られた読出データが記憶手段に記憶されているか否かを判断する判断ステップと、上記判断ステップで、上記データ読出ステップで得られた読出データが上記記憶手段に記憶されてないと判断された場合に、上記読出データを上記記憶手段に記憶する読出データ格納制御ステップと、所定量の読出データが上記記憶手段に記憶された場合に、上記記憶手段に記憶されている読出データを用いて再生データを生成する再生データ生成ステップとを備える。
【0009】
本発明のホログラム記録媒体は、画像化したデータの物体光と参照光とを干渉させ、干渉縞によって上記データを要素ホログラムとして記録するホログラム記録媒体であって、同一のデータ内容の要素ホログラムが複数記録されている。
また同一のデータ内容の複数の要素ホログラムが位置的にまとめられて記録されている。
特には、同一のデータ内容の複数の要素ホログラムが、縦方向及び/又は横方向に隣り合うようにまとめられて記録されている。
或いは、同一のデータ内容の複数の要素ホログラムが斜め方向に隣り合うようにまとめられて記録されている。
また同一のデータ内容の複数の要素ホログラムが、密接した状態で位置的にまとめられて記録されている。
特には、同一のデータ内容の複数の要素ホログラムが、縦方向及び/又は横方向に密接した状態でまとめられて記録されている。
或いは、同一のデータ内容の複数の要素ホログラムが密接した状態で一方向に並ぶように記録されている。
或いは、同一のデータ内容の複数の要素ホログラムが斜め方向に密接した状態でまとめられて記録されている。
【0010】
記録するデータを2次元ページデータとして画像化し、1つの要素ホログラムとして記録したホログラム記録媒体に対して、再生装置で各要素ホログラムを読み出していき、再生データを得るようにすることで、例えばコンピュータデータやAVコンテンツデータを提供できる比較的大容量なストレージメディアシステムを実現できる。
ここで再生装置、再生方法としては、ホログラム記録媒体上の各要素ホログラムからの読出データについては、記憶手段にまだ記憶されていない読出データが得られたときに、記憶手段に記憶する。既に記憶されている読出データが得られた場合は、例えばその読出データを破棄するなどして記憶しない。そして記憶手段に所定量の読出データが揃った時点で再生データを再構築して生成する。
このことは、各要素ホログラムの読み出し順序を規定しないことと、或る要素ホログラムの読出データが重複して読み出されることを許容することになり、換言すれば、各要素ホログラムに対する読み出しスキャンの自由度を高め、またホログラム記録媒体上での要素ホログラムの形成方式にも自由度を高めることになる。
そしてこれは、再生装置にスキャン機構を設けず、ユーザーが再生装置を持ってホログラム記録媒体上を移動させることで、各要素ホログラムを読み取っていくような再生方式にも好適となる。
【0011】
なお、上記の所定量とは、再生データ再構築のために必要なデータを取得できた状態とするという意味での所定量であり、必ずしもホログラム記録媒体上の全部の要素ホログラムを読み出すこととをいうものではない。もちろんホログラム記録媒体上の全部の要素ホログラムを読み出せば、再生データ構築のために必要な所定量の要素ホログラムの読出データが得られたと言えるが、例えば同一内容のデータが複数の要素ホログラムで記録されている場合など、全ての要素ホログラムの読出を行わなくても、再生データ構築のために必要な所定量の読出データが得られた状態となる場合もある。
【発明の効果】
【0012】
本発明によれば、再生装置側はホログラム記録媒体の各要素ホログラムの読み出しを行うための精密なスキャン機構を設ける必要がない。特に言えば、ユーザーが再生装置をホログラム記録媒体に対向させて移動させるようにすれば(例えば左右に振るなど)、スキャン機構は不要となる。例えば参照光照射手段を機械的に移動させたり、或いは再生像検出のためのレンズ系を移動させるなどの機械的なスキャン機構は不要である。
これにより再生装置の構成を大幅に簡略化し、小型で低価格な装置としてユーザーに提供できる。
また、ユーザーは任意に再生装置を移動させてホログラム記録媒体の読取を行う場合、各要素ホログラムの読み出しは確率的に行われるものとなるが、得られた読出データを記憶手段に記憶していき、所定量の読出データが揃った時点で再生データを再構築して生成する処理を行うことで、再生データを適切に得ることができる。
【0013】
また例えばユーザーによる手動のスキャンにより、各要素ホログラムの読み出しが確率的に行われることを考えた場合、ホログラム記録媒体としては、同一内容のデータの要素ホログラムを複数記録することが各データの読取の確率を上げることになり、読取性能の向上及び読取時間の短縮に好適である。
さらに、同一内容のデータを記録した要素ホログラムが縦横方向或いは斜め方向にまとめて配置されるようにすることで、手動による不安定・不規則なスキャンの場合も、各データの読み出し確率を上げることができ、読取性能の向上及び読取時間の短縮に好適である。
さらに、同一内容のデータを記録した要素ホログラムが密接状態でまとめて配置されるようにすれば、手動による不安定・不規則なスキャンの場合も、各データの読み出し確率を上げることができることに加えて、ホログラム記録媒体上の配置スペースを有効に利用でき、記憶容量の確保の点でも好適となる。
【0014】
そして以上のことから本発明によれば、再生装置の簡易で低コストな装置構成、安定したデータ再生性能、ホログラム記録媒体の或る程度の容量確保という効果を得ることができ、例えばコンピュータデータやAVコンテンツデータなどをホログラム記録媒体に記録し、これを広く頒布するとともに、一般ユーザーが再生装置を用いて、ホログラム記録媒体に記録されたデータを取得できるようにするシステムなどを想定した場合、非常に好適なものとすることができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施の形態を次の順序で説明する。
[1.ホログラムメモリの記録再生]
[2.再生装置の構成]
[3.ホログラムメモリからのデータ再生処理]
[4.要素ホログラムの配置構成]
【0016】
[1.ホログラムメモリの記録再生]

まず実施の形態におけるホログラムメモリ3の基本的な記録再生動作について図1で説明する。
図1(a)はホログラムメモリ3に対するデータ記録の様子を示している。
記録時には、記録光学系として液晶パネル1、集光レンズ2の他、図示しない光源や所要の光学系素子が配置される。また記録用の参照光(以下、記録参照光L3と言う)が、所定の角度状態でホログラムメモリ3に照射されるようにしている。
【0017】
例えばコンテンツデータ等としての記録データをホログラムメモリ3に記録する場合、その記録データを図1(c)のように、1つの二次元ページデータとする単位としての所定バイト毎のデータブロックBLKに分割する。そして各データブロックBLKのデータDTを、それぞれ1つの二次元ページデータにエンコードする。なお、各データブロックBLKのデータDTには、そのエンコードの際に、データブロック番号等、データブロックBLKを識別するアドレス情報が付加される。
そして図1(a)に示すように、二次元バーコード状の画像データに変換されたデータDTは、液晶パネル1において二次元ページデータ画像として表示される。
【0018】
所定の光源から出力され、例えば平行光とされたレーザ光L1は、二次元ページデータ画像が表示された液晶パネル1を通過することで、その二次元ページデータ画像の像としての物体光L2となる。
この物体光L2は、集光レンズ2で集光され、ホログラムメモリ3上にスポットとして集光される。
このとき、ホログラムメモリ3に対しては、所定角度で記録参照光L3が照射されている。これにより物体光L2と参照光L3が干渉し、その干渉縞がドット状の要素ホログラムとして記録されることになる。
なお、このように集光レンズ2を用いる場合、要素ホログラムとして記録されるデータは、集光レンズ2のフーリエ変換作用により、記録データの像のフーリエ像となる。
【0019】
このようにしてホログラムメモリ3に1つの要素ホログラムが記録されるが、図1(c)の記録データを構成する各データブロックBLKの記録データDTについて、同様に二次元ページデータに変換し、それぞれ要素ホログラムとして記録していく。
各要素ホログラムの記録の際には、図示しない移送機構により、ホログラムメモリ3(ホログラム材料)の位置を移送させ(もしくは記録光学系を移送させ)、要素ホログラムの記録位置をホログラムメモリ3の平面上で僅かにずらせていく。これにより、例えばシート状のホログラムメモリ3に、その平面方向に多数の要素ホログラムが配置されるように記録が行われていくことになる。
【0020】
以上のように要素ホログラムが記録されたホログラムメモリ3に対しては図1(b)のように再生が行われる。図1(b)に示すコリメータレンズ4及びイメージャ5は、ホログラムリーダとしての後述する再生装置内に設けられる構成である。
ホログラムメモリ3に対しては、記録時の記録参照光L3と同じ照射角度で、再生用の参照光(以下、再生参照光L4と言う)を照射する。再生参照光L4を照射すると、要素ホログラムとして記録された再生像が得られる。つまり二次元ページデータの像が、記録時の液晶パネル1と共役な場所に現れる。これをイメージャ5で読み取ればよい。
即ちホログラムメモリ3からの再生像光L5はコリメータレンズ4で平行光とされ、例えばCCD撮像素子アレイ、もしくはCMOS撮像素子アレイなどで形成されたイメージャ5に入射する。ホログラムメモリ3上でのフーリエ像は、コリメータレンズ4で逆フーリエ変換されて二次元ページデータの像となるため、この二次元ページデータ画像としての再生像がイメージャ5で読み取られる。
イメージャ5は再生像に応じた電気信号としての再生像信号を発生させる。この再生像信号についてデコード処理を行うことで、元々のデータ、つまり記録のために二次元ページデータに変換する前のデータDTが得られることになる。
【0021】
[2.再生装置の構成]

実施の形態の再生装置としてのホログラムリーダ20について説明する。まず図2で本例のホログラムリーダ20を使用した、ホログラムメモリ3に対するデータ読出スキャン動作を述べる。
図2には一例として、オーディオコンテンツなどのデータが記録されたホログラムメモリ3が、ポスターPT等に貼付されている状態を示している。
実施の形態のホログラムリーダ20は、ユーザーが手に持てる程度に小型軽量の機器とされている。このホログラムリーダ20の筐体上の一面には、上述した再生参照光L4を出力する光源や、ホログラムメモリ3からの再生像光を取り込むためのレンズ系などが形成されている。
ユーザーは図のようにホログラムリーダ20を持って、その筐体の一面側がホログラムメモリ3に対向するようにした状態で近接させ、ホログラムリーダ20を任意の方向に振るようにする。このとき、再生参照光L4が所定角度で照射された要素ホログラムの再生像がホログラムリーダ20によって読み取られていく。
なお、図2(a)にはホログラムリーダ20をホログラムメモリ3から離した状態でユーザーが左右に振るような様子を示しているが、ホログラムリーダ20の筐体の一部をホログラムメモリ3の表面上に接触させた状態で上下左右に振る、つまり摺動させるようなスキャン方式も想定される。
【0022】
図2(b)は、多数の要素ホログラムh1〜h24が記録されたホログラムメモリ3を模式的に示しているが、ユーザーは任意に、例えば左右にホログラムリーダ20を振ることで、ホログラムメモリ3に対する読出スキャンの軌跡(再生参照光L4のスポットの軌跡)は破線で示すようになる。
実際にユーザーがどのようにホログラムリーダ20を移動させるかは全く不定であるため、再生参照光L4のスポットは、全く不規則かつ不安定に、ホログラムメモリ3上の要素ホログラムに照射される。この状態で、再生参照光L4のスポットが照射された要素ホログラムの再生像がホログラムリーダ20に読み取られていくことになる。つまり各要素ホログラムh1〜h24は、それぞれ、確率的に読み出しが行われる。
【0023】
例えば要素ホログラムh1は、図1の説明からわかるように、元々の記録データを構成する或るデータブロックBLKのデータDTが記録されたものである。要素ホログラムh2〜h24も、それぞれが、或るデータブロックBLKのデータDTが記録されている。例えば要素ホログラムh1〜h24で、24個のデータブロックBLKにわけられたコンテンツデータが記録されていると仮定する。
ユーザーがホログラムメモリ3の前でホログラムリーダ20を上下左右に振ることを続けると、それぞれの要素ホログラムh1〜h24が、少なくとも一度は読み取れた状態に到達することができる。ホログラムリーダ20内部では、順不同に読み出されてくる各要素ホログラムh1〜h24からの読み出しデータを記憶しておく。そして全ての要素ホログラムh1〜h24のデータが読み出せた時点で、その要素ホログラムh1〜h24の読出データを再構築すれば、元々のコンテンツデータを生成することができる。つまりホログラムメモリ3からデータを再生することができる。
【0024】
このようにユーザーがホログラムリーダ20をホログラムメモリ3に対向させて上下左右に振ることで、ホログラムメモリ3とホログラムリーダ20の相対位置を変位させ、それによって各要素ホログラムからの読出データを得るスキャン方式(以下、手動スキャンという)を行うホログラムリーダ20の構成を図3で説明する。
【0025】
図3においてシステムコントローラ21は、例えばマイクロコンピュータにより形成され、ホログラムメモリ3からのデータ読取のための動作を実行するために各部を制御する。
またシステムコントローラ21は操作部33の操作情報を監視し、ユーザーの操作に応じて必要な制御を行う。またシステムコントローラ21は、表示部34を制御してユーザーに提示する各種の情報の表示を実行させる。
【0026】
ホログラムメモリ3からのデータ読取のために、コリメータレンズ4、イメージャ5,及び参照光光源7を備える。
参照光光源7は、図1に示した記録時の記録参照光L3と同じ角度でホログラムメモリ3に対して再生参照光L4を照射するようにホログラムリーダ20の筐体上に配置されている。つまり再生像光L5を取り込むコリメータレンズ4の位置との相対位置関係が規定される。
例えばLED(Light Emitting Diode)或いは半導体レーザによる参照光光源7は、発光駆動回路30によって発光される。発光駆動回路30は、当該ホログラムリーダ20によってホログラムメモリ3の再生を行う場合に、システムコントローラ21の指示によって参照光光源7を発光駆動する。
【0027】
コリメータレンズ4はホログラムメモリ3からの再生像光をイメージャ5に導く。イメージャ5は、例えばCMOSイメージセンサやCCDイメージセンサ等の固体撮像素子アレイによって構成され、コリメータレンズ4を介して入射した再生像の光を受光し、電気信号としての再生像信号を出力する。
【0028】
ホログラムスキャン制御部22は、イメージャ5の動作を制御すると共に、イメージ5によって得られる再生像信号の処理を行う。
即ちホログラムスキャン制御部22は、イメージャ5に対して転送タイミング信号、転送アドレス信号等を供給して、いわゆる撮像動作により固体撮像素子アレイで得られる再生像信号を順次転送出力させる。そしてイメージャ5から転送されたきた再生像信号について、サンプリング処理、AGC処理、A/D変換処理等を施して出力する。
【0029】
ホログラムスキャン制御部22から出力されるデジタルデータ化された再生像信号は、メモリコントローラ23の制御によってDRAM24に蓄積される。
メモリコントローラ23は、DRAM24、フラッシュメモリ25に格納するデータについての各部の転送制御や、書込/読出制御を行う。
DRAM(Dynamic Random Access Memory)24に蓄積された再生像信号に関する信号処理系として、ホログラム画像処理部27,信号処理部28が設けられる。
またホログラム画像処理部27や信号処理部28と、処理結果や処理に必要な情報についてのシステムコントローラ21とのやりとりを行うためにSRAM(Static Random Access Memory)29が用いられる。
また、フラッシュメモリ25には、例えば上記各部での信号処理に必要な設定値、係数、その他の各種制御パラメータ等が記憶される。
なお、後述するように信号処理部28でデコードされたデータは、DRAM24に格納されるものとして説明するが、信号処理部28でデコードされたデータについてはフラッシュメモリ25に格納するようにしてもよい。
【0030】
ホログラム画像処理部27は、再生像信号について、光学的な原因によるデータ値の変動である光学歪み補正や、明るさ調整、画像位置ズレ補正、画像回転ズレ補正を行う。またイメージャ5によっては階調のある撮像データとして再生像信号が得られるが、これを白黒の二値に変換する二値化処理も行う。ホログラムメモリ3から読み取るべきデータは、元々の記録データを白黒の二値のデータとして二次元ページデータ化されたものであるからである。
【0031】
信号処理部28は、二次元の画像パターンとして二値化された再生像信号、つまり1つの要素ホログラムから得られたデータについて、デコード処理やエラー訂正処理を行い、元のデータDTを得る。即ち、1枚の二次元画像としての再生像信号から、図1(c)に示したような1つのデータブロックBLKとしてのデータ列を生成する。
信号処理部28は、デコードした1つのデータブロックBLKのデータDTを、メモリコントローラ23に受け渡す。メモリコントローラ23は、デコードしたデータDTをDRAM24に格納させる。或いは後述するが、既にDRAM24に同一のデータブロックのデータ(つまりデータ内容が同一のデータ)が存在する場合は、メモリコントローラ23はデコードされたデータDTを破棄する。
【0032】
信号処理部28でデコードされたデータDTがDRAM24に格納されていくが、スキャンが進むことで、例えば図2の要素ホログラムh1〜h24のそれぞれから読み出されたデータDTがDRAM24に格納された状態となる。メモリコントローラ23は、格納された各データDTを元々のデータブロックBLKとしての所定のアドレス順に並べて再構築し、記録された元のデータ、例えばコンピュータデータやAVコンテンツデータを生成する。
【0033】
再構築されて生成されたデータは、外部インターフェース26を介して外部機器100、例えばパーソナルコンピュータや、オーディオプレーヤ或いはビデオプレーヤ等のAV装置、又は携帯電話器等の外部機器に対して、ホログラムメモリ3からの再生データとして転送される。外部インターフェース26は例えばUSBインターフェース等が想定される。もちろん外部インターフェース26はUSB以外の規格のインターフェースでもよい。ユーザーは外部機器側で、ホログラムメモリ3からの再生データを利用できる。例えばパーソナルコンピュータでコンピュータデータを利用したり、AV装置や携帯電話等で、AVコンテンツデータを再生させることができる。
【0034】
なお図示していないが、所定の記録メディアに対して記録を行うメディアドライブを設け、再生データを、そのメディアドライブにより記録メディアに記録されるようにしてもよい。
記録メディアとしては、例えば光ディスク、光磁気ディスク等が想定される。例えばCD(Compact Disc)方式、DVD(Digital Versatile Disc)方式、ブルーレイディスク(Blu-ray Disc:登録商標)方式、ミニディスク(Mini Disc)方式などの各種方式の記録可能型のディスクが記録メディアとして考えられる。これらのディスクが記録メディアとされる場合、メディアドライブは、ディスク種別に対応したエンコード処理、エラー訂正コード処理、或いは圧縮処理等を施して、データをディスクに記録する。
また記録メディアとしてハードディスクも想定され、その場合、メディアドライブは、いわゆるHDD(ハードディスクドライブ)として構成される。
さらに記録メディアは、固体メモリを内蔵した可搬性のメモリカード、或いは内蔵型固体メモリとしても実現でき、その場合メディアドライブは、メモリカード或いは内蔵型固体メモリに対する記録装置部として構成され、必要な信号処理を行ってデータ記録を行う。
【0035】
さらには、例えば記録メディアに記録したAVコンテンツ等のデータをメディアドライブで再生し、その再生したAVコンテンツ等のデータをデコードして出力する音声再生出力系、映像再生出力系を備えることは当然考えられる。
またメディアドライブで再生したデータを外部インターフェース26を介して外部機器に転送することもできる。
さらに上記のCD、DVD、ブルーレイディスク、ミニディスク、メモリカード等の可搬性の記録メディアに記録した場合は、その記録メディアを外部機器で再生させることで、ユーザーはホログラムメモリ3から読み出した再生データを利用できる。
【0036】
[3.ホログラムメモリからのデータ再生処理]

このホログラムリーダ20によりホログラムメモリ3からデータ再生を行う際の処理を図4で説明する。図4はデータ再生時においてシステムコントローラ21の制御に基づいて実行される処理を示している。
【0037】
例えばユーザーは、操作部33から再生開始の操作を行った後、図2のようにホログラムリーダ20をホログラムメモリ3に対向させて任意に移動させることになる。
システムコントローラ21は、操作部33を用いた再生開始の操作を検知したら、ステップF101として、発光駆動回路30に指示を与え、参照光光源7を発光させる。つまり再生参照光L4をホログラムメモリ3に照射できる状態とする。
この状態でユーザーがホログラムリーダ20をホログラムメモリ3に対向させて移動させることで、各要素ホログラムの再生像光L5が順次イメージャ5に検出されることになる。
【0038】
ステップF102では、イメージャ5及びホログラムスキャン制御部22の動作により、或る要素ホログラムの再生像光L5が取り込まれ、再生像信号としてのデジタルデータが得られる。ホログラムスキャン制御部22から出力される、或る要素ホログラムの再生像信号は、メモリコントローラ23によって一旦DRAM24に格納される。
システムコントローラ21は、ステップF102の動作としての要素ホログラムの再生像信号の取込を確認したら、ステップF103の画像処理、ステップF104のデコード処理を実行させる。
即ちステップF103ではDRAM24に取り込んだ再生像信号をホログラム画像処理部27に転送させ、画像処理として、光学歪み補正、明るさ調整、画像位置ズレ補正、画像回転ズレ補正、二値化を実行させる。
またステップF104では、画像処理を終えた再生像信号を信号処理部28に転送させ、デコード処理を実行させる。
【0039】
ステップF104で或る1つの要素ホログラムについてのデータDTがデコードされたら、ステップF105では、そのデータDTが、既にDRAM24に格納されているか否かを判断する。例えばデコードしたデータDTに含まれているアドレス、データブロック番号などを確認し、これと同一のアドレス、データブロック番号のデータDTが既にDRAM24に格納されているか否かを確認すればよい。
同じデータDTが既にDRAM24に格納されている場合とは、今回読み込んだ要素ホログラムが、以前に読み込まれていた場合である。ホログラムメモリ3に対しては上述の通りユーザーの手動スキャンによって各要素ホログラムの読み出しが行われるため、同じ要素ホログラムが複数回読み出されることがあるためである。
逆に、今回デコードしたデータDTと同一のデータDTがDRAM24に格納されていない場合とは、或る要素ホログラムから、はじめてのデータDTの読み出しができた場合である。
【0040】
ステップF105で、デコードしたデータDTが、まだDRAM24に格納していないものであると判断された場合は、ステップF107に進み、当該デコードしたデータDTを、或る1つの要素ホログラムから読み出したデータとしてDRAM24に格納させる。
そしてステップF108で、所定量のデータDTの読み取りが完了したか否かを判断し、完了していなければステップF102に戻って、続いて再生像光が読み取られてくる要素ホログラムについての処理を同様に実行していく。
なお、ステップF108で判断する所定量のデータの読み取り完了とは、再生データを構築するための必要量のデータがデコードされてDRAM24に格納されている状態をいう。具体的にはその判断は、再生データを構成する全てのデータブロックBLKのデータDTがDRAM24に格納されたか否かという条件で判断すればよく、ホログラムメモリ3の全ての要素ホログラムの読取を完了したか否かという判断とする必要はない。後述するが、同一のデータ内容を記録した要素ホログラムが複数記録されている場合があるためである。さらには、全てのデータブロックを読み込まなくとも、エラー訂正処理やデータ補間処理で元々の記録データを構築できる場合もあるためである。
【0041】
ステップF105において、デコードしたデータDTが既にDRAM24に格納されていると判断された場合は、ステップF106に進み、そのデコードデータ、つまり或る要素ホログラムからの読出データを破棄してステップF102に戻る。即ちこれは、同一の要素ホログラムの読み出しが既に行われていた場合である。或いは後述する同一のデータ内容を記録した要素ホログラムが複数ホログラムメモリ3に記録されている場合に、今回読み出した要素ホログラムとは別の要素ホログラムから同一のデータDTが既に読み出されていた場合である。
【0042】
なお、図4には示していないが、ステップF104でデコードエラーとなる場合がある。例えば或る要素ホログラムの再生像信号が得られた場合でも、スキャン位置が適切ではなかったなどの理由で良好な読取ができず、適正なデコードができいこともあり得るが、そのような場合は、そのデータは破棄してステップF102にもどればよい。
【0043】
ここまでの処理が繰り返されていくことにより、ホログラムメモリ3上の要素ホログラムがユーザーの手動スキャンに応じて順不同に読み出され、DRAM24には、図1(c)の各データブロックBLKのデータDTが順不同に蓄積されていく。
ステップF108で、所定量のデータ読み出しが完了したと判断されたら、処理はステップF109に進み、DRAM24に格納された読出データDTを再構築する。即ち各データブロックBLKのデータを抽出してデータブロック番号順に並べ、再生データを生成する。例えばコンテンツデータとしての再生データを生成する。この再生データは、その後例えば外部インターフェース26から外部機器100に出力される。
以上でホログラムメモリ3からの再生が完了するため、システムコントローラ21はステップF110で発光駆動回路30を制御して参照光光源7をオフとさせ、再生参照光L4の照射を終了させる。以上で再生処理を終える。
【0044】
以上の処理からわかるように本例のホログラムリーダ20では、ホログラムメモリ3上の各要素ホログラムについて、読み込む順番にこだわらずに、読み取れた要素ホログラムの読出データからDRAM24に格納していく。そして所定量の要素ホログラムの読み出しが完了した時点で、データを再構築し、元々のコンテンツデータ等のデータ、つまり再生データを生成するものである。
【0045】
このような処理を行うことで、図2で説明したような手動スキャンによってホログラムメモリ3からのデータ再生が可能となる。
そしてこのことは、参照光光源7やコリメータレンズ4,イメージャ5による再生像光の検出系において、スキャン機構を設ける必要はなくなり、これらは装置内に固定的に配置されればよい。従って、ホログラムリーダ20を簡易な構成とし、低コストで実現できる。
また、各要素ホログラムの読み出しは確率的に行われるものとなるが、得られた読出データをDRAM24に格納し、また同一の読出データが得られた場合はそれを破棄し、必要量の読出データが揃った時点で再生データを再構築して生成する処理を行うことで、再生データを適切に得ることができる。
さらにユーザーにとっては、再生しようとするときに、単にホログラムリーダ20をホログラムメモリ3に対向させて任意に移動させればよく、感覚的に容易であり、困難な操作を要求するものではない。このため使用性も良いものとなる。
そしてこれらのことから、例えばコンピュータデータやAVコンテンツデータなどをホログラムメモリ3に記録し、これを広く頒布するとともに、一般ユーザーがホログラムリーダ20を用いて、ホログラムメモリ3に記録されたデータを取得できるようにするシステムの実現に好適となる。
【0046】
なお、以上の実施の形態のホログラムリーダ20においては、本発明の再生装置の請求項の構成要件には、以下の部位又は処理機能が対応する。
参照光照射手段:参照光光源7及び発光駆動回路30。
データ読出手段:コリメータレンズ4、イメージャ5、ホログラムスキャン制御部22、ホログラム画像処理部27、信号処理部28。
記憶手段:DRAM24。
読出データ格納制御手段:メモリコントローラ23、システムコントローラ21のDRAM24の制御機能(ステップF105,F106,F107)。
再生データ生成手段:メモリコントローラ23、システムコントローラ21のデータ再構築機能(ステップF108,F109)。
【0047】
また本発明の再生方法の請求項の構成要件は、以下のように対応する。
データ読出ステップ:ステップF101〜F104。
判断ステップ:ステップF105。
読出データ格納制御ステップ:ステップF106,F107。
再生データ生成ステップ:ステップF108,F109。
【0048】
再生装置(ホログラムリーダ20)の構成は上記図3の構成に限られない。ホログラムメモリ3から再生したデータの出力形態も多様に考えられる。
またホログラムメモリ3は、それ自体がコンピュータデータやAVコンテンツデータ等の提供媒体として、現在一般に流通しているCD、DVDのようなパッケージメディア形態でユーザーに販売、提供されるものでもよいし、ポスターや書籍などに貼付されたり印刷形成されて、ユーザーがホログラムリーダを用いて、各種データ等を入手できるような形態とされてもよい。
【0049】
[4.要素ホログラムの配置構成]

続いて、上記のように手動スキャンで再生を行うホログラムリーダ20を用いる場合に好適なホログラムメモリ3について説明していく。特にはホログラムメモリ3に記録される各要素ホログラムの配置構成に関する。
【0050】
図2(b)には模式的な例として、ホログラムメモリ3に要素ホログラムh1〜h24が記録されている状態を示したが、これは例えば元々の記録データを24個のデータブロックBLKに分割し、各データブロックBLKのデータDTを、それぞれ24個の要素ホログラムh1〜h24として記録した状態として述べた。なお、もちろん24個としたのは説明のために簡略化した例にすぎず、より多数の要素ホログラムを記録することが可能である。
例えばこのような場合、図4のステップF108で所定量のデータ読出が完了したと判断されるのは、24個の要素ホログラムh1〜h24の全てについてのデータDTの読出が完了した時点となる。
ここで手動スキャンで再生を行うホログラムリーダ20は、各要素ホログラムh1〜h24を確率的に読み出すものであることを考えると、ホログラムメモリ3上の全ての要素ホログラムh1〜h24をまんべんなく取り込むことが困難になる場合があり得る。
つまり手動スキャンはあくまでユーザーの動作であるので、ユーザーが任意にホログラムリーダ20を移動させるときに、なかなかスキャンできない要素ホログラムが生ずることがある。言い換えれば再生参照光L4が照射されない要素ホログラムが生ずることがある。そして例えば要素ホログラムh5の読取がなかなかできないでいると、その要素ホログラムh5に記録されたデータブロックBLKのデータDTが読み込めず、ステップF108で所定量のデータ読み出し完了と判断されない状態が続き、ユーザーがいつまでも手動スキャンを続けなければならないという事態が生ずることがあり得る。
【0051】
このようなことを考えると、手動スキャンにより再生を行うシステムでは、各データDTの読取確率を上げることが重要となる。
そして各データDTの読取確率を上げるには、ホログラムメモリ3に同一のデータ内容の要素ホログラムを複数記録しておくことが適切となる。
図5に例を示す。
ここではホログラムメモリ3上に、要素ホログラムh1〜h24が記録されているとしている。元々の記録データは、24個のデータブロックBLKに分割し、その各データブロックBLKのデータを、それぞれ要素ホログラムh1〜h24として記録する。要素ホログラムh1〜h24はそれぞれ別のデータブロックBLKのデータDTを記録したもので、読み出されるデータ内容が異なる。
そして図5では、ホログラムメモリ3上に144個の要素ホログラムが記録されている状態を示しているが、これは要素ホログラムh1〜h24がそれぞれ6個づつ記録された状態である。同一符号を付した要素ホログラムは、同一のデータ内容の要素ホログラムである。例えば要素ホログラムh1は、元の記録データの1番目のデータブロックBLKのデータDTを記録したものである。
例えば元の記録データの7番目のデータブロックBLKのデータDTを記録した要素ホログラムh7を太線の丸で示しているが、この要素ホログラムh7がホログラムメモリ3の平面上に6個、分散して記録されている。
【0052】
このように同一のデータ内容を有する要素ホログラムが複数記録されるようにすると、手動スキャンによって不規則に各要素ホログラムが読み出される場合において、各データの読出の確率が高まることになる。
これによりステップF108で所定量のデータ読出が完了したと判断される状態に早く達することができ、ユーザーが長い時間手動スキャンを続けることをなるべく回避できるようになる。
【0053】
同一のデータ内容の要素ホログラムを何個記録するか、或いは平面上にどのような位置に配置するかは、記録データのサイズ、つまりデータブロックBLKの数や、ホログラムメモリ3に記録可能な要素ホログラムの数に応じて決められればよい。
また各要素ホログラムを規則的に配置してもよいしランダムに配置しても良い。もちろん、ランダムな手動スキャンに対して読取確率を高めるような配置が好適である。
【0054】
次に図6の例は、同一のデータ内容の複数の要素ホログラムが位置的にまとめられてホログラムメモリ3に記録されるようにしたものである。特には、同一のデータ内容の複数の要素ホログラムが、縦横方向に隣り合うようにまとめられた場合である。
この図6では、ホログラムメモリ3に、それぞれ異なるデータ内容の要素ホログラムh1〜h36が記録されるが、その要素ホログラムh1〜h36がそれぞれ4個づつ記録されている。つまり同一のデータ内容の要素ホログラムが4つづつ記録されている。
そして破線部MHとして例えば要素ホログラムh6に注目すると、同一のデータ内容である4つの要素ホログラムh6は、縦横方向にまとめられてそれぞれが正方形頂点位置に配置される。他の要素ホログラムも同様であり、4つがまとめられて配置されている。
【0055】
手動スキャンの場合、上述のようにスキャン位置がランダムであることに加えて、手ぶれも避けられないが、そのような事情を考慮すると、同一のデータ内容の要素ホログラムをまとめて配置すると、手ぶれ等があっても、まとめられたうちの1つの要素ホログラムに再生参照光L4を照射できる確率が高く、つまり各データDTの読取確率を上げ、スキャン時間を短縮することができる。従って、同一のデータ内容の要素ホログラムをまとめて配置することも、再生に好適となる。
【0056】
図7も同様に、同一のデータ内容の複数の要素ホログラムが4つづつ位置的にまとめられてホログラムメモリ3に記録されるようにしたものであるが、この場合、まとめられた単位を複数個記録したものである。
このホログラムメモリ3には、それぞれデータ内容が異なる要素ホログラムh1〜h18が記録されている。そして各要素ホログラムh1〜h18は8個づつ記録されている。
そして破線部MHとして例えば要素ホログラムh6を示しているが、同一のデータ内容である4つの要素ホログラムh6が縦横方向にまとめられてそれぞれが正方形頂点位置に配置される。そして、この4つの固まりがホログラムメモリ3の平面上に2つ形成されている。
つまりこの例は、手ぶれに対しても各データDTの読出確率を上げ、さらにはスキャン軌跡のランダム性に対しても読出確率を上げるものである。
【0057】
図8は、要素ホログラムの並ぶ各行及び各列が互い違いにずれながら配置されている例である。
このホログラムメモリ3には、それぞれデータ内容が異なる要素ホログラムh1〜h81が記録されている。そして破線部MHとして例えば2つの要素ホログラムh1を示しているが、このように各要素ホログラムh1〜h81については斜め方向に隣り合う2つの要素ホログラムとして、同一のデータ内容の要素ホログラムが記録されている。
この例も、手ぶれやスキャン軌跡のランダム性に対しても各データDTの読出確率を上げることができる。特には、手動スキャンが左右方向又は上下方向のいずれの方向に行われても、同一のデータ内容の要素ホログラムが2つだけでありながら、図6の例と同等程度の読出確率を得ることができる。
つまりこの例は、同一のデータ内容の要素ホログラムの数を最小限としながら、ホログラムメモリ3としての記憶容量の増大を見込むことができる。
なお、ホログラムメモリ3の記憶容量を下げてもかまわない場合は、破線部MHのような斜め方向に隣り合う同一データ内容の2つの要素ホログラムの固まりを、ホログラムメモリ3上に複数設けることで、さらに各データDTの読出確率を上げることができる。
【0058】
以上の図5〜図8を用いて説明した各例或いはその変形例によれば、各データDTの読出確率を上げ、手動スキャンに要する時間を短縮できるが、各要素ホログラムについては、それぞれ以下の点を考慮して離間間隔が設定されている。
各要素ホログラム間の距離を狭めれば狭めるほど記録密度が上がりホログラムメモリ3の記憶容量を上げることができるものの、再生時に再生参照光L4が要素ホログラムより大きい場合には隣接する要素ホログラムからの再生信号も拾ってしまうことになり、クロストークが生じてしまう。
例えば図9(a)に要素ホログラムh1と、その周囲に間隔を詰めて要素ホログラムh2,h3,h4,h5が配置されている状態を示している。そして参照光光源7からの再生参照光L4のスポットSPが、1つの要素ホログラムのサイズより大きな径となっている。
この場合、図のように再生参照光L4のスポットSPが要素ホログラムh1の真上にきたときに、そのスポットSP内に周囲の要素ホログラムh2,h3,h4,h5も入ってしまう。すると、イメージャ5には要素ホログラムh1の再生像光に加えて、要素ホログラムh2,h3,h4,h5のそれぞれの一部の再生像光も検出されてしまうことになり、クロストークが生ずる。当然ながらこのような状態では要素ホログラムh1の再生像信号が劣化した状態となる。つまり各要素ホログラムからのデータDTの再生精度が低下する。
【0059】
一方、クロストークが問題にならないように各要素ホログラム間距離を十分に離してしまうと、スキャン時に各要素ホログラムの間を通過してしまう場合も生じ、データを読み取ることができなくなる確率が高まる。図9(b)に例を示すが、例えば要素ホログラムh1、h2の間にクロストークが発生しない十分な離間距離をとると、図のように再生参照光L4のスポットSPが要素ホログラムh1、h2の間を抜けるように照射されることもある。当然、手動スキャンの際の各要素ホログラムの読出確率が低下してしまい好ましくない。
【0060】
そこで各要素ホログラムについては、この図9(a)(b)の中間程度の離間距離を設定することになる。即ちクロストークが多少生じても、データDTのデコードに支障がない程度に、各要素ホログラムの離間距離を設定するものである。
このとき手動スキャンによっては、スポットSPが確実に各要素ホログラムの真上を通過して読めるという保証はない。そこで上述のように、各要素ホログラムに記録してある2次元ページデータ(データDT)の中にデータブロックBLKを示すアドレス情報を埋め込み、ユーザーにホログラムメモリ3全体を複数回、なぞるようにスキャンしてもらう。そしてホログラムリーダ20は、読めた各要素ホログラムのデータDTから順次DRAM24に格納し、必要量の要素ホログラムを読み終えてから、DRAM24上のデータを再構築して再生データを得るシステムとしている。
【0061】
このように十分にクロストークが小さくなる程度まで各要素ホログラム間の距離を開けると、手動スキャン時に読み取れる確率が減っていくので総スキャン時間が長くなる可能性がある。これに対しては、冗長度が増えることにより総容量は減少してしまうが、上記各例のように同じデータを書いた要素ホログラムを複数記録することにより、各データの読出確率を向上させ、スキャン時間を短縮できるものである。
【0062】
続いて、スキャン時間の低減やデータ読取性能の点で、より有効な要素ホログラムの配置例を説明する。
上記のように要素ホログラムの離間距離を詰めるとクロストークが生ずるが、その隣接する要素ホログラムが同一のデータ内容のものであれば、同じ像がイメージャ5上に結像するので、像のズレがなければそれはノイズ成分とはならない。つまりクロストークとはならない。
【0063】
図10でこれを説明する。
図10は、図1で説明したように記録時に用いる液晶パネル1、集光レンズ2と、記録再生されるホログラムメモリ3、及びホログラムリーダ20内のコリメータレンズ4とイメージャ5の関係を模式的に示している。
【0064】
図10(a)は、要素ホログラムh1の記録再生時の様子を示している。
液晶パネル1には、要素ホログラムh1の記録のための二次元ページデータが表示されている状態として、各LCD画素G1〜G11を示している。このときの液晶パネル1及び集光レンズ2と、ホログラムメモリ3との位置関係を光軸J1で示している。
液晶パネル1の各LCD画素G1〜G11のパターンの物体光L2は集光レンズ2によって要素ホログラムh1の形成位置に照射される。この図では物体光L2をLCD画素G4,G6から見た状態で示しているが、この要素ホログラムh1は、液晶パネル1の各画素G1〜G11の位置情報が、物体光L2としての光線の角度情報に変換されて記録されていることに相当する。
要素ホログラムh1の再生時には、要素ホログラムh1からの再生像光L5が、図のようにイメージャ5の検出画素g1〜g11に検出される。即ち液晶パネル1のLCD画素G1の情報が検出画素g1に検出され、LCD画素G2の情報が検出画素g2に検出され・・・という状態となる。
【0065】
ここで図10(b)に液晶パネル1及び集光レンズ2と、ホログラムメモリ3との位置関係を光軸J2にシフトした状態を考える。即ち要素ホログラムh1に隣接する要素ホログラムh2を記録する場合である。
この要素ホログラムh2も、液晶パネル1の各画素G1〜G11の位置情報が、物体光L2としての光線の角度情報に変換されて記録されていることに相当する。この要素ホログラムh2に対して要素ホログラムh1の再生時の再生参照光L4が照射されてしまうとする。要素ホログラムh1の再生時において要素ホログラムh2から得られる再生像光L5も、液晶パネル1のLCD画素G1の情報がイメージャ5の検出画素g1に検出され、LCD画素G2の情報が検出画素g2に検出され・・・という状態となる。
図10(a)(b)では、液晶パネル1のLCD画素G4,G6に注目して示しているが、つまり、要素ホログラムh1の再生時に、イメージャ5の検出画素g6に検出される情報は、図10(a)のように要素ホログラムh1についてのLCD画素G6の情報であり、同時に図10(b)のように要素ホログラムh2についてのLCD画素G6の情報である。
同様に、要素ホログラムh1の再生時に、イメージャ5の検出画素g4に検出される情報は、要素ホログラムh1についてのLCD画素G4の情報であり、同時に要素ホログラムh2についてのLCD画素G4の情報である。
【0066】
つまりは、再生時には同じ角度の光線束はイメージャ5の同じ検出画素上に結像するように配置させているため、隣接する要素ホログラムh1、h2が、異なるデータ内容であると、クロストークが問題となる。
ところが要素ホログラムh1、h2が、同一のデータ内容であれば、イメージャ5の各検出画素g1〜g11には、それぞれ要素ホログラムh1、h2から同じ情報が検出されることになり、クロストークは問題とはならない。
【0067】
以上のように、同一のデータ内容の要素ホログラムは、クロストークの問題を考慮しなくても良いことを考えると、以下のような配置が考えられることになる。
【0068】
図11は、同一のデータ内容の複数の要素ホログラムが、密接した状態で位置的にまとめられて記録されるようにした例である。特には、各要素ホログラムが縦方向及び横方向に配列される状態に記録される場合に、同一のデータ内容の複数の要素ホログラムが、縦横方向に密接した状態でまとめられて記録されている。
この図11では、ホログラムメモリ3に、それぞれ異なるデータ内容の要素ホログラムh1〜h49が記録されるが、その要素ホログラムh1〜h49がそれぞれ4個づつ密着状態で記録されている。例えば破線部MHとして示す4つの要素ホログラムh1のように、同一のデータ内容の要素ホログラムが4つづつ密接記録されている。
同一のデータ内容である4つの要素ホログラムh1は、縦横方向にまとめられてそれぞれが正方形頂点位置に配置される。他の要素ホログラムも同様であり、4つがまとめられて配置されている。もちろん密接された4つの要素ホログラムは、同一のデータ内容であるため、クロストークの問題はない。
そしてこのように同一のデータ内容の要素ホログラムを密接状態でまとめて配置することで、手ぶれ等があっても、まとめられた要素ホログラムからデータDTを読み取れる確率は一層高くなる。さらに、その上で、同一のデータ内容の要素ホログラムを密着状態として記録密度を高めることで、ホログラムメモリ3上のスペースを有効に使用し、より多数の要素ホログラムを記録できる。このためホログラムメモリ3の記憶容量の確保、或いは増大という点でも適している。
【0069】
また図12も同様に、同一のデータ内容の複数の要素ホログラムが4つづつ密着した状態でまとめられてホログラムメモリ3に記録されるようにしたものであるが、この場合、まとめられた単位を複数個記録したものである。
このホログラムメモリ3には、それぞれデータ内容が異なる要素ホログラムh1〜h32が記録されている。そして各要素ホログラムh1〜h32は8個づつ記録されている。
そして破線部MHとして例えば要素ホログラムh1の固まりを示しているが、同一のデータ内容である4つの要素ホログラムh1が縦横方向に密着してまとめられた固まりがホログラムメモリ3の平面上に2つ形成されている。
つまりこの例は、手ぶれに対しても各データDTの読出確率を上げ、さらにはスキャン軌跡のランダム性に対しても読出確率を上げるものである。
【0070】
図13は、縦方向(列方向)に同一のデータ内容の要素ホログラムを密着状態で配置した例である。ホログラムメモリ3には、それぞれデータ内容が異なる要素ホログラムh1〜h12が記録されている。そして各要素ホログラムh1〜h12は、それぞれ多数形成され、縦方向に密着配置されている。例えば要素ホログラムh12について破線部MHとして示すように、同一のデータ内容の要素ホログラムh12が、縦方向に密着した状態で一列の要素ホログラムを成している。
このようにすると、ユーザーがホログラムメモリ3を横切るように手動スキャンさせれば、ほぼ確実に全ての要素ホログラムh1〜h12のデータDTを読み込めることになる。つまり各データブロックBLKのデータDTの読取確率を大幅に向上させ、手動スキャンの時間を短縮できる。
【0071】
図14は、図13よりもホログラムメモリ3の記憶容量を高めた例であり、要素ホログラムh1〜h24を記録した例である。図のように、各要素ホログラムh1〜h24は、それぞれ縦方向に密着した状態で複数個が連続して配置される。図13の例における各列を2つに分割して異なる要素ホログラムを記録したものと言える。
これは、図13のように列方向に全て同じデータ内容の要素ホログラムを配置するようにすると、記憶容量が不足する場合に好適な例となる。
もちろん、各列を3つ以上に分割する例も考えられる。
【0072】
図15は、同一のデータ内容の複数の要素ホログラムが斜め方向に密接した状態でまとめられて記録されている例である。
この図15では、ホログラムメモリ3に、それぞれ異なるデータ内容の要素ホログラムh1〜h81が記録されるが、その要素ホログラムh1〜h81がそれぞれ2個づつ密着して記録されている。例えば破線部MHとして要素ホログラムh1を示すように、同一のデータ内容である2つの要素ホログラムh1が、斜め方向に密着した状態でまとめられて配置される。
この例の場合も、手ぶれ等があっても、まとめられた要素ホログラムからデータDTを読み取れる確率を一層高くすることができる。
また図示しないが、例えば破線部MHのような同一のデータ内容の要素ホログラムの固まりを、ホログラムメモリ3上に複数記録するようにして、スキャン軌跡のランダム性に対して読取確率を上げることも考えられる。
【0073】
以上、要素ホログラムの配置例を説明してきたが、同一のデータ内容の要素ホログラムを複数記録する場合の具体的な配置例は、さらに多様に考えられる。
実際には、ホログラムメモリ3に記録しようとするデータのサイズとともに読取確率を考慮して決定されればよい。
手動スキャンを用いるため、要素ホログラムの配置は特定の配置に決定することも不要であり、記録するデータ(コンテンツデータ等)によって最適な配置が決められればよい。
例えばデータサイズの小さいコンテンツデータをホログラムメモリ3に記録する場合は、読取確率を考慮して図13のような配置とし、データサイズの大きいコンテンツデータを記録する場合は、容量を確保するために図15のような配置とするなど、柔軟に配置方式が決められても良い。
【0074】
なお、実施の形態で説明したホログラムメモリ3は密着コピーによる大量複製も容易に可能である。
従って例えばコンピュータデータやAVコンテンツデータなどをホログラム記録媒体に記録し、これを広く頒布するとともに、一般ユーザーが再生装置(ホログラムリーダ20)を用いて、ホログラムメモリ3に記録されたデータを取得できるようにするシステムなどを想定した場合、非常に好適なものとすることができる。
【図面の簡単な説明】
【0075】
【図1】本発明の実施の形態のホログラムメモリの記録再生原理の説明図である。
【図2】実施の形態のホログラムメモリに対する手動スキャンの説明図である。
【図3】実施の形態のホログラムリーダのブロック図である。
【図4】実施の形態のホログラムリーダの再生処理のフローチャートである。
【図5】実施の形態の同一のデータ内容の要素ホログラムを複数記録したホログラムメモリの例の説明図である。
【図6】実施の形態の同一のデータ内容の要素ホログラムをまとめて記録したホログラムメモリの例の説明図である。
【図7】実施の形態の同一のデータ内容の要素ホログラムをまとめて記録したホログラムメモリの例の説明図である。
【図8】実施の形態の同一のデータ内容の要素ホログラムをまとめて記録したホログラムメモリの例の説明図である。
【図9】要素ホログラムの配置とクロストークの関係の説明図である。
【図10】隣りあう要素ホログラムのイメージャ検出位置の説明図である。
【図11】実施の形態の同一のデータ内容の要素ホログラムを密接させてまとめて記録したホログラムメモリの例の説明図である。
【図12】実施の形態の同一のデータ内容の要素ホログラムを密接させてまとめて記録したホログラムメモリの例の説明図である。
【図13】実施の形態の同一のデータ内容の要素ホログラムを密接させてまとめて記録したホログラムメモリの例の説明図である。
【図14】実施の形態の同一のデータ内容の要素ホログラムを密接させてまとめて記録したホログラムメモリの例の説明図である。
【図15】実施の形態の同一のデータ内容の要素ホログラムを密接させてまとめて記録したホログラムメモリの例の説明図である。
【符号の説明】
【0076】
3 ホログラムメモリ、4 レンズ、5 イメージャ、7 参照光光源、20 ホログラムリーダ、21 システムコントローラ、22 ホログラムスキャン制御部、23 メモリコントローラ、24 DRAM、27 ホログラム画像処理部、28 信号処理部、30 発光駆動回路、34 表示部




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013