Warning: copy(.htaccess): failed to open stream: Permission denied in /home/jp321/public_html/header.php on line 8
生体分子検出方法及び光学読み取り装置 - 松下電器産業株式会社
米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 測定; 光学 -> 松下電器産業株式会社

発明の名称 生体分子検出方法及び光学読み取り装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−10325(P2007−10325A)
公開日 平成19年1月18日(2007.1.18)
出願番号 特願2005−187678(P2005−187678)
出願日 平成17年6月28日(2005.6.28)
代理人 【識別番号】100097445
【弁理士】
【氏名又は名称】岩橋 文雄
発明者 岡 卓也 / 田代 義和 / 丹羽 和裕 / 島北 寛仁
要約 課題
DNAマイクロアレイなどの標的生体分子検出チップの光学画像から、検査結果を判断するには、作業が煩雑となる。また、特定のスポットを同定することが難しく、実際の光学画像と数値を比較することが困難であり、検査結果から診断を行なうのに多くの時間がかかることが課題であった。

解決手段
標的生体分子検出チップ1上に固定化されるスポット5を撮像エリア2内に優先順位に基づいて配列させ、撮像エリア2を撮像手段6によって1回の撮影により撮像し、光学画像モニター31に表示される光学画像3の陽性スポット7の位置から標的生体分子の検出結果を同定することで、簡単に、迅速な診断をすることができる。
特許請求の範囲
【請求項1】
標的生体分子と結合する1種類以上のプローブが固定化された標的生体分子検出チップを用いた標的生体分子検出方法であって、前記プローブは前記標的生体分子検出チップ上にそれぞれが独立した1種類以上のスポットとして固定化されており、前記スポットは優先順位に基づいて前記標的生体分子検出チップ上に配置されており、1種類以上の前記スポットは前記標的生体分子検出チップの撮像エリア内に配置されており、前記撮像エリアを光学的に1回で撮像することによって前記生体分子を検出することを特徴とした生体分子検出方法。
【請求項2】
スポットが円状であることを特徴とした請求項1に記載の生体分子検出方法。
【請求項3】
撮像エリアが円形である標的生体分子検出チップを用いることを特徴とした請求項1または2のいずれかに記載の生体分子検出方法。
【請求項4】
中心にはスポットが配置されていない撮像エリアがドーナツ形である標的生体分子検出チップを用いることを特徴とした請求項1〜3のいずれかに記載の生体分子検出方法。
【請求項5】
撮像エリアの中心から円周部に向かって優先順位が配列するようにスポットが配置されていることを特徴とする請求項3または4のいずれかに記載の生体分子検出方法。
【請求項6】
撮像エリアが平滑面を有する平板状の基板で構成された標的生体分子検出チップを用いることを特徴とした請求項1〜5のいずれかに記載の生体分子検出方法。
【請求項7】
撮像エリアがメンブレンで構成されており、平滑面を有した平滑基準面に前記撮像エリアを押し当てて撮像することを特徴とする請求項1〜5のいずれかに記載の生体分子検出方法。
【請求項8】
優先順位が目的の診断結果の進行度に対応して順位付けられていることを特徴とする請求項1〜7のいずれかに記載の生体分子検出方法。
【請求項9】
撮像エリアが方形である標的生体分子検出チップを用いることを特徴とした請求項1に記載の生体分子検出方法。
【請求項10】
撮像エリアの1辺に沿って優先順位が配列するようにスポットが配置されていることを特徴とする請求項9に記載の生体分子検出方法。
【請求項11】
標的生体分子と結合する1種類以上のプローブがそれぞれ独立した1種類以上のスポットとして固定化された標的生体分子検出チップを撮像する光学読み取り装置であって、前記標的生体分子検出チップを固定化する標的生体分子検出チップ固定化手段と、前記生体分子検出チップ上に予め定められた波長域で励起光を照射する1つまたは複数の光源と、前記標的生体分子検出チップ上で前記励起光によって発光する予め定められた波長域の光を受光する光電変換素子である受光手段を備え、前記標的生体分子の重要度に基づいた優先順位に従って撮像エリアに配置された1種類以上の前記スポットを光学的に1回の撮影によって撮像することを特徴とした光学読み取り装置。
【請求項12】
撮像された光学画像を表示する光学画像モニターを備え、1回の撮影によって撮像された前記光学画像を1画面で表示することを特徴とした請求項11記載の光学読み取り装置。
【請求項13】
標的生体分子検出チップ上で発光する光を集光する集光レンズをさらに備えた請求項11または12のいずれかに記載の光学読み取り装置。
【請求項14】
受光手段が二次元アレイで構成されていることを特徴とした請求項11〜13のいずれかに記載の光学読み取り装置。
【請求項15】
光源がLEDであることを特徴とした請求項11〜14のいずれかに記載の光学読み取り装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は、DNAやペプチドに結合するプローブをチップ上に固定したDNAマイクロアレイやペプチドアレイなどを用いて生体試料中に含まれる標的核酸分子やペプチドなどの複数種類の標的生体分子を検出する標的生体分子検出方法及び光学読み取り装置に関する。
【背景技術】
【0002】
生体試料中の分子マーカーとして特定の酵素の活性や抗原のエピトープや抗体のみならずDNAやRNAなどの核酸分子が広く利用されるようになってきている。抗原や核酸分子などの分子マーカーを既知の抗体分子や核酸分子と結合させることによって、生体試料中の分子マーカーを検出し定量し診断に用いる事ができる。
【0003】
分子マーカーと結合するプローブをスポットとして基盤表面上にマトリックス状に配置させた検出チップを用い、検出チップ上に生体試料を反応させることで、複数の分子マーカーを同時に検出することができる。
【0004】
特に標的核酸分子とハイブリット形成するプローブ核酸が多種類マトリックス上に形成されたDNAマイクロアレイの利用が活発になってきている。
【0005】
DNAマイクロアレイ上には数千から数万種のプローブがスポットとしてマトリックス状に固定化されており、それぞれのプローブ分子に結合する核酸を光学的に検出することで同時に多種類の核酸分子を検出する事ができる。
【0006】
DNAマイクロアレイに固定化されているDNAプローブは、半導体のホトリソグラフィー技術を利用し基板上で1塩基ずつ光重合させる方法や、予め数十〜数百塩基の長さに合成されたDNA分子の溶解した液滴を基板上にスポッティングすることによって吸着させて固定化する方法がとられる。
【0007】
核酸分子を検出する方法として、標的核酸分子と相補的塩基対を形成するプローブ核酸を基板表面に固定化し、予め蛍光分子やRIなどの標識分子で標識した標的核酸分子をプローブとハイブリダイゼーションさせ、基板表面に標識分子が結合したかどうかを蛍光検出器等で検出する方法が利用される。
【0008】
標的核酸分子に標識分子を標識する方法としては、生体試料から抽出されたDNA分子に酵素反応などを利用して直接蛍光分子を標識する方法や、抽出されたRNAからcDNAを合成しPCRで増幅する際に蛍光分子を取り込ませる方法が用いられている。
このようなDNAマイクロアレイを用いて高速かつ高感度に標的核酸分子を検出する方法が開発されている(特許文献1参照)。
【0009】
以下、そのようなハイブリダイゼーション反応検出方法及びその装置に関して図16を参照しながら説明する。
【0010】
図16のように複数のレーザー光源101、102、103・・・から射出したビームがマルチビームスプリッタ104に入射し2分され、マルチレンズ105を透過してマルチプリズム106を通過しマルチピンホール107に入射する。マルチピンホール107から射出したマルチビーム108がDNAチップ109を照射し、DNAチップ109上の蛍光は対物レンズ110を透過し波長選択ビームスプリッタ111によって蛍光波長の光が反射され、マルチチャネルフォトマル112によって検出される。マルチビーム108とDNAチップ109を相対移動させ、得られたデータから蛍光画像を構成することによって、高速高感度でDNAチップの蛍光画像を検出することができる。
【特許文献1】特開2002−55050号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
このような従来の検出方法では、得られた光学画像から検査結果を判断するためには、光学画像を解析処理して得られる数値とプローブのスポットとを照合しなければならず、スポット数が多い場合は照合が煩雑となり、また、構成された光学画像の中から特定のスポットを同定することが難しく、実際の光学画像と数値を比較することが困難であり、検査結果を元に診断を行う際に時間がかかるという課題があり、光学画像から特定のスポットを同定しやすくて数値とスポット像の照合が簡単で、検査結果による診断を現場で迅速に行える検出方法が要求されている。
【0012】
本発明は、このような従来の課題を解決するものであり、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法を提供することを目的としている。
【0013】
また、このような従来の検出方法に用いる装置は大型になり、設置場所として広いスペースを有した場所に限定されてしまうという課題があり、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい検出装置が要求されている。
【0014】
本発明は、このような従来の課題を解決するものであり、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい検出装置を提供することを目的としている。
【課題を解決するための手段】
【0015】
本発明の生体分子検出方法は、上記目的を達成するために、標的生体分子と結合する1種類以上のプローブが固定化された標的生体分子検出チップを用いた標的生体分子検出方法であって、前記プローブは前記標的生体分子検出チップ上にそれぞれが独立した1種類以上のスポットとして固定化されており、前記スポットは優先順位に基づいて前記標的生体分子検出チップ上に配置されており、1種類以上の前記スポットは前記標的生体分子検出チップの撮像エリア内に配置されており、前記撮像エリアを光学的に1回で撮像することによって前記生体分子を検出することを特徴とした生体分子検出方法としたものである。
【0016】
この手段により、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0017】
本発明の生体分子検出方法は、上記目的を達成するために、スポットが円状であることを特徴とした請求項1に記載の生体分子検出方法としたものである。
【0018】
この手段により、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0019】
本発明の生体分子検出方法は、上記目的を達成するために撮像エリアが円形である標的生体分子検出チップを用いることを特徴とした請求項1または2のいずれかに記載の生体分子検出方法としたものである。
【0020】
この手段により、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0021】
本発明の生体分子検出方法は、上記目的を達成するために中心にはスポットが配置されていない撮像エリアがドーナツ形である標的生体分子検出チップを用いることを特徴とした請求項1〜3のいずれかに記載の生体分子検出方法としたものである。
【0022】
この手段により、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0023】
本発明の生体分子検出方法は、上記目的を達成するために撮像エリアの中心から円周部に向かって優先順位が配列するようにスポットが配置されていることを特徴とする請求項3または4に記載の生体分子検出方法としたものである。
【0024】
この手段により、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0025】
本発明の生体分子検出方法は、上記目的を達成するために撮像エリアが平滑面を有する平板状の基板で構成された標的生体分子検出チップを用いることを特徴とした請求項1〜5のいずれかに記載の生体分子検出方法としたものである。
【0026】
この手段により、精度良く光学画像を得ることができ、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0027】
本発明の生体分子検出方法は、上記目的を達成するために撮像エリアがメンブレンで構成されており、平滑面を有した平滑基準面に前記撮像エリアを押し当てて撮像することを特徴とする請求項1〜5のいずれかに記載の生体分子検出方法としたものである。
【0028】
この手段により、精度良く光学画像を得ることができ、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0029】
本発明の生体分子検出方法は、上記目的を達成するために優先順位が目的の診断結果の進行度に対応して順位付けられていることを特徴とする請求項1〜7のいずれかに記載の生体分子検出方法としたものである。
【0030】
この手段により、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0031】
本発明の生体分子検出方法は、上記目的を達成するために撮像エリアが方形である標的生体分子検出チップを用いることを特徴とした請求項1または2のいずれかに記載の生体分子検出方法としたものである。
【0032】
この手段により、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0033】
本発明の生体分子検出方法は、上記目的を達成するために撮像エリアの1辺に沿って優先順位が配列するようにスポットが配置されていることを特徴とする請求項9に記載の生体分子検出方法としたものである。
【0034】
この手段により、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行える生体分子検出方法となる。
【0035】
本発明の光学読み取り装置は、上位目的を達成するために標的生体分子と結合する1種類以上のプローブがそれぞれ独立した1種類以上のスポットとして固定化された標的生体分子検出チップを撮像する光学読み取り装置であって、前記標的生体分子検出チップを固定化する標的生体分子検出チップ固定化手段と、前記生体分子検出チップ上に予め定められた波長域で励起光を照射する1つまたは複数の光源と、前記標的生体分子検出チップ上で前記励起光によって発光する予め定められた波長域の光を受光する光電変換素子である受光手段を備え、前記標的生体分子の重要度に基づいた優先順位に従って撮像エリアに配置された1種類以上の前記スポットを光学的に1回の撮影によって撮像することを特徴とした光学読み取り装置としたものである。
【0036】
この手段により、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい検出装置となる。
【0037】
本発明の光学読み取り装置は、上記目的を達成するために撮像された光学画像を表示する光学画像モニターを備え、1回の撮影によって撮像された前記光学画像を1画面で表示することを特徴とした請求項11記載の光学読み取り装置としたものである。
【0038】
この手段により、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい検出装置となる。
【0039】
本発明の光学読み取り装置は、上記目的を達成するために標的生体分子検出チップ上で発光する光を集光する集光レンズをさらに備えた請求項11または12のいずれかに記載の光学読み取り装置としたものである。
【0040】
この手段により、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい検出装置となる。
【0041】
本発明の光学読み取り装置は、上記目的を達成するために受光手段が二次元アレイで構成されていることを特徴とした請求項11〜13のいずれかに記載の光学読み取り装置としたものである。
【0042】
この手段により、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい検出装置となる。
【0043】
本発明の光学読み取り装置は、上記目的を達成するために光源がLEDであることを特徴とした請求項11〜14のいずれかに記載の光学読み取り装置としたものである。
【0044】
この手段により、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい検出装置となる。
【発明の効果】
【0045】
本発明によれば、光学画像から特定のスポットを簡単に同定することができ数値とスポットの蛍光像の照合が簡単にでき、また、検査結果による診断を迅速に行うことのできる生体分子検出方法を提供できる。
【0046】
また、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすくなる検出装置を提供できる。
【発明を実施するための最良の形態】
【0047】
本発明の請求項1記載の発明は、標的生体分子と結合する1種類以上のプローブが固定化された標的生体分子検出チップを用いた標的生体分子検出方法であって、前記プローブは前記標的生体分子検出チップ上にそれぞれが独立した1種類以上のスポットとして固定化されており、前記スポットは優先順位に基づいて前記標的生体分子検出チップ上に配置されており、1種類以上の前記スポットは前記標的生体分子検出チップの撮像エリア内に配置されており、前記撮像エリアを光学的に1回で撮像することによって前記生体分子を検出することを特徴とした生体分子検出方法としたものであり、標的生体分子を標的生体分子検出チップ上の撮像エリアに限定して固定化されたプローブと反応させ、標的生体分子を撮像エリア内に結合させ、結合した標的生体分子を光学的に1回の撮影で撮像することによって、複数種類の標的生体分子を同時に迅速に検出することができるようになり、スポットが撮像エリア内に優先順位に基づいて配置されているため、撮影によって得られた光学画像を確認することによって視覚的に容易にスポットの同定ができ、また、配置された優先順位に基づいて検査結果を迅速に判断することができるため、診断を素早く行うことができる生体分子検出方法となる作用を有する。
【0048】
本発明の請求項2記載の発明は、スポットが円状であることを特徴とした請求項1に記載の生体分子検出方法としたものであり、円状のスポットを撮像エリア内に配置させることによって撮像エリア内に効率良くたくさんのスポットを形成させることができるようになり、撮像エリア内に結合した標的生体分子を1回の撮影によって撮像するため標的生体分子を同時に検出することができるようになり、スポットが撮像エリア内に優先順位に基づいて配置されているため、撮影によって得られた光学画像を確認することによって視覚的に容易にスポットの同定ができ、また、配置された優先順位に基づいて検査結果を迅速に判断できるため、診断を素早く行うことができる生体分子検出方法となる作用を有する。
【0049】
本発明の請求項3記載の発明は、撮像エリアが円形である標的生体分子検出チップを用いることを特徴とした請求項1または2のいずれかに記載の生体分子検出方法としたものであり、光学的に撮像エリアを撮影する際、レンズを使うことによって円形の撮像エリアから効率良く光を集めることができるため感度が上がり、撮像エリア内に結合した標的生体分子を1回の撮影によって撮像するため標的生体分子を同時に検出することができるようになり、スポットが撮像エリア内に優先順位に基づいて配置されているため、撮影によって得られた光学画像を確認することによって視覚的に容易にスポットの同定ができ、また、配置された優先順位に基づいて検査結果を迅速に判断できるため、診断を素早く行うことができる生体分子検出方法となるという作用を有する。
【0050】
本発明の請求項4記載の発明は、中心にはスポットが配置されていない撮像エリアがドーナツ形である標的生体分子検出チップを用いることを特徴とした請求項1〜3のいずれかに記載の生体分子検出方法としたものであり、光学的に撮像エリアを撮影する際、撮像エリアの中心付近と周辺部の集光率が異なるレンズを使った場合であっても中心部にはスポットが配置されていないので、集光率が安定な領域を撮影することによってムラ無く精度良くスポットを検出できるようになり、できるようになり、スポットが撮像エリア内に優先順位に基づいて配置されているため、撮影によって得られた光学画像を確認することによって視覚的に容易にスポットの同定ができ、また、配置された優先順位に基づいて検査結果を迅速に判断できるため、診断を素早く行うことができる生体分子検出方法となるという作用を有する。
【0051】
本発明の請求項5記載の発明は、撮像エリアの中心から円周部に向かって優先順位が配列するようにスポットが配置されていることを特徴とする請求項3または4のいずれかに記載の生体分子検出方法としたものであり、中心部に対する周辺部の位置関係は視覚的に容易に判断できるため、撮影によって得られた光学画像を確認することによって容易にスポットの同定ができ、また、配置された優先順位に基づいて検査結果を迅速に判断できるため、診断をより素早く行うことができる生体分子検出方法となるという作用を有する。
【0052】
本発明の請求項6記載の発明は、撮像エリアが平滑面を有する平板状の基板で構成された標的生体分子検出チップを用いることを特徴とした請求項1〜5のいずれかに記載の生体分子検出方法としたものであり、撮像エリアが平板状であるため、撮像エリアを光学的に撮影する際、ピントムラが無く撮影できるようになるため、精度良く撮像エリア内のスポット像を得ることができる生体分子検出方法となるという作用を有する。
【0053】
本発明の請求項7記載の発明は、撮像エリアがメンブレンで構成されており、平滑面を有した平滑基準面に前記撮像エリアを押し当てて撮像することを特徴とする請求項1〜5のいずれかに記載の生体分子検出方法としたものであり、平滑基準面をメンブレンの撮像エリアの裏側から押し当てることによって撮像エリアのスポットがある表面を容易に平面にすることができ、メンブレンである撮像エリアを光学的に撮影する際、容易にピントムラが無いように撮影できるようになるため、精度良く撮像エリア内のスポット像を得ることができる生体分子検出方法となるという作用を有する。
【0054】
本発明の請求項8記載の発明は、優先順位が目的の診断結果の進行度に対応して順位付けられていることを特徴とする請求項1〜7のいずれかに記載の生体分子検出方法としたものであり、撮像された光学画像のなかで、目的の診断結果の進行度に対応してスポットが並んでいるため、標的生体分子が結合しているスポットの位置を見ることで容易に進行度を判断することができるようになり、検査結果を迅速に判断し進行度として診断できる生体分子検出方法となるという作用を有する。
【0055】
本発明の請求項9記載の発明は、撮像エリアが方形である標的生体分子検出チップを用いることを特徴とした請求項1に記載の生体分子検出方法としたものであり、撮像エリアを光学的に撮影する際、CCDカメラなどの方形の受光素子を使用する場合、効率良く撮像エリアにスポットを配置することができるため、標的生体分子を同時に検出することができるようになり、スポットが撮像エリア内に優先順位に基づいて配置されているため、撮影によって得られた光学画像を確認することによって視覚的に容易にスポットの同定ができ、また、配置された優先順位に基づいて検査結果を迅速に判断できるため、診断を素早く行うことができる生体分子検出方法となる作用を有する。
【0056】
本発明の請求項10記載の発明は、撮像エリアの1辺に沿って優先順位が配列するようにスポットが配置されていることを特徴とする請求項9に記載の生体分子検出方法としたものであり、スポットが方形の辺に沿って直線的に配列しているため、視覚的に容易にスポットを同定することができ、また、配置された優先順位に基づいて検査結果を迅速に判断できるため、診断をより素早く行うことができる生体分子検出方法となるという作用を有する。
【0057】
本発明の請求項11記載の発明は、標的生体分子と結合する1種類以上のプローブがそれぞれ独立した1種類以上のスポットとして固定化された標的生体分子検出チップを撮像する光学読み取り装置であって、前記標的生体分子検出チップを固定化する標的生体分子検出チップ固定化手段と、前記生体分子検出チップ上に予め定められた波長域で励起光を照射する1つまたは複数の光源と、前記標的生体分子検出チップ上で前記励起光によって発光する予め定められた波長域の光を受光する光電変換素子である受光手段を備え、前記標的生体分子の重要度に基づいた優先順位に従って撮像エリアに配置された1種類以上の前記スポットを光学的に1回の撮影によって撮像することを特徴とした光学読み取り装置としたものであり、標的生体分子をプローブに結合させた標的生体分子検出チップを標的生体分子検出チップ固定手段に固定し、光源から励起光を標的生体分子検出チップに照射することで標的生体分子検出チップ上の標的生体分子を発光させ、撮像エリアの発光を光電変換素子で1回の撮影によって撮像することよって、複数種類の標的生体分子を同時に迅速に検出することができるようになり、スポットが撮像エリア内に優先順位に基づいて配置されているため、撮影によって得られた光学画像を確認することによって視覚的に容易にスポットの同定ができ、また、配置された優先順位に基づいて検査結果を迅速に判断することができるため、診断を素早く行うことができ、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい光学読み取り装置となる作用を有する。
【0058】
本発明の請求項12記載の発明は、撮像された光学画像を表示する光学画像モニターを備え、1回の撮影によって撮像された前記光学画像を1画面で表示することを特徴とした請求項11記載の光学読み取り装置としたものであり、撮像された光学画像を光学画像モニターに映すことによって、撮像エリア内のスポット像が光学画像モニター内に映し出され、光学画像モニターからスポット像が容易に同定でき、並んでいる優先順位に基づいて検査結果を迅速に判断することができるため、診断を素早く行うことができ、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい光学読み取り装置となる作用を有する。
【0059】
本発明の請求項13記載の発明は、標的生体分子検出チップ上で発光する光を集光する集光レンズをさらに備えた請求項11または12のいずれかに記載の光学読み取り装置としたものであり、集光レンズによって、撮像エリア内の光が集められのでスポットが感度良く検出されるようになり、より高感度に、標的生体分子を検出でき、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい光学読み取り装置となる作用を有する。
【0060】
本発明の請求項14記載の発明は、受光手段が二次元アレイで構成されていることを特徴とした請求項11〜13のいずれかに記載の光学読み取り装置としたものであり、2次元アレイで構成された受光手段によって同時に複数種類の標的生体分子を検出することができるようになり、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい光学読み取り装置となる作用を有する。
【0061】
本発明の請求項15記載の発明は、光源がLEDであることを特徴とした請求項11〜14のいずれかに記載の光学読み取り装置としたものであり、LEDによって標的生体分子検出チップを低エネルギーで照射し、励起光照射による褪色を抑えて撮像エリアの撮像を行うことができるため、安定して再現良く標的生体分子を検出でき、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい光学読み取り装置となる作用を有する。
以下、本発明の実施の形態について図面を参照しながら説明する。
【0062】
(実施の形態1)
図1は本発明の実施の形態1に記載の生体分子検出方法を示した図である。図1(A)は生体分子検出方法に用いる標的生体分子検出チップ1を示しており、図1(B)は撮像エリア2を示しており、図1(C)は標的生体分子を検出するための工程を示しており、図1(Dは)標的生体分子検出チップ1を用いた生体分子検出方法を示しており、図1(E)は撮像エリア2を撮影した光学画像3を示している。
【0063】
図1(A)に示すように、標的生体分子検出チップ1上には標的生体分子と結合するプローブ4がそれぞれ独立したスポット5として撮像エリア2内に固定化されている。例えば、標的生体分子としてDNAを検出する場合、標的DNAとハイブリダイゼーションする相補的塩基配列を含んだ核酸がプローブ4として用いられる。プローブ4は、例えば合成されたDNA分子が用いられ、特定の生物由来の遺伝物質を検知するために、生物由来のDNAやRNAに対して相補的な塩基配列を有しており、結合の特異性を高めるために20〜数百塩基の長さのDNA分子が利用される。例えば特定の細菌を検出するために、細菌のゲノム情報を元に細菌ゲノムに対する相補的な塩基配列をプローブ4に含ませることで検知可能となる。例えばVOC分解菌であるDehalococcoides ethenogenes 195Rを検出するためにDehalococcoides ethenogenes 195Rのゲノム上のITSを含む数十〜数百の塩基配列がプローブ4として利用される。また、同一サンプル中に含まれる複数種類の標的核酸分子を同時に検出するために、複数種類の標的核酸分子に対して相補的な塩基配列を有した複数種類のプローブ4が標的生体分子検出チップ1上にそれぞれ独立した領域にスポット5として固定化される。スポット5とは円形や四角形など規定された一つの領域を指し、互いに結合していない2次元平面状に分布した領域を指し、例えば円形のスポット5が数十〜数百個並んだDNAマイクロアレイやマイクロウェルプレートが利用される。DNAマイクロアレイの場合数十μm〜数百μmの直径を有する円形のスポット5が数十μm〜数百μmの間隙をあけて2次元平面上に配置される。標的生体分子検出チップ1としては平面を有したガラス、樹脂、金属などが利用されており、DNAマイクロアレイの場合はスライドガラスが利用される。プローブ4を標的生体分子検出チップ1に固定化する方法は、プローブ4であるDNAを含んだ溶液を標的生体分子検出チップ1上に滴下し乾燥させる方法が利用され、インクジェットやマイクロスポッティング装置などを用いて少量のDNA溶液を小さな液滴としてスライドガラス上に滴下することで、25mm×75mmのスライドガラス上に10〜10000個のスポット5を作成することができる。また、標的生体分子検出チップ1であるスライドグラスの表面をアミノ基、アルデヒド基、エポキシ基等を有する各種シランカップリング剤で処理しておき、プローブ4であるオリゴDNAの末端に官能基としてアミノ基、アルデヒド基、SH基、ビオチンやチオールなどの分子種を利用して官能基を導入しカップリング反応させる方法や、光重合反応を利用して標的生体分子検出チップ1上でプローブDNAを合成する方法が利用される。
【0064】
また、標的生体分子としてタンパク質や糖鎖などの抗原を検出する場合、タンパク質や糖鎖と特異的に結合する抗体やレクチンなどが利用され、例えば、B型肝炎ウイルスの存在を検出するためにはB型肝炎ウイルスの抗原であるHBS抗原に対する抗HBS抗体がプローブとして用いられ、また、例えば肝癌マーカーであるα−フェトプトテインアイソフォームを検出するにはAFPレクチンがプローブとして用いられる。なお、プローブ4としてこれら以外のものでも、特定の標的生体分子と結合することのできる分子であれば、タンパク質、糖鎖に限らずタンパク質断片、ペプチド、エピトープ、受容体、抗原、アプタマ−アレルゲンなども利用することができる。この場合も同様に0.1μg/ml〜0.1mg/mlの抗HBSモノクローナル抗体などをPBSなどの緩衝液に希釈し0.1μl〜10μlの微小液滴としてスライドグラス上に滴下して固相化することができる。
【0065】
図1(B)に示すように、撮像エリア2内にはスポット5が配置されており、スポット5は優先順位に基づいて配列されている。前記優先順位は1種類以上の前記標的生体分子の重要度に基づいて順位が付けられる。例えば図1(B)のように12個のスポット5を左上から右上に向かって優先順位に従って4つ配列し1段目とし、1段目の直下に5番目のスポット5を配置し右に向かって4つ配列し2段目とし、2段目の下に左から右に向かって4つ配列し3段目とする。例えば感染症の診断をする際に、同時に検出したい疾病として、ペスト、マールブルグ病、ラッサ熱、コレラ、細菌性赤痢、腸チフス、パラチフス、腸管出血性大腸菌感染症、アメーバ赤痢、エキノコックス症、オウム病、ウイルス性肝炎を検出する場合、それぞれの感染症の起こる頻度は異なるが、各感染症の発現頻度を重要度とし優先順位を設けることができる。国立感染症センター感染症情報センターにより開示されている平成14年度の累積報告書によると、ペスト0件、マールブルグ病0件、ラッサ熱0件、コレラ51件、細菌性赤痢699件、腸チフス63件、パラチフス35件、腸管出血性大腸菌感染症3183件、アメーバ赤痢465件、エキノコックス症10件、オウム病54件、ウイルス性肝炎948件とあり、発症頻度から優先順位を設けると、1)腸管出血性大腸菌感染症、2)ウイルス性肝炎、3)細菌性赤痢、4)アメーバ赤痢、5)腸チフス、6)オウム病、7)コレラ、8)パラチフス、9)エキノコックス症、10)ペスト、11)マールブルグ病、12)ラッサ熱となる。この優先順位に基づき図1(B)のように配列させることによって発症頻度に基づいてプローブが配列された標的生体分子検出チップ1となる。この場合プローブ4としてはそれぞれ感染する細菌やウイルスの遺伝子に対するcDNAやオリゴ合成プローブが用いられる。
【0066】
図1(C)に示すように、標的生体分子をサンプルより抽出し、次に抽出された生体分子を精製し、次に精製された生体分子に標識分子を標識し、次に標識分子が標識された標的生体分子を標的生体分子検出チップ1上のプローブ4と結合させ、次に標的生体分子検出チップ1上のプローブ4と結合していない余分な物質を洗浄し、次に標的生体分子検出チップ1上に結合した標識分子を検出することによって標的生体分子が検出される。例えば標的生体分子として感染している細菌やウイルスDNAを検出する場合は、生体試料である末梢血からをラウリル硫酸ナトリウム、N−ラウロイルサルコシンナトリウム、リン酸ラウリル、カプリレート塩、コレート塩、スルフォンなどのアニオン性界面活性剤処理で37℃で10分間処理する事によってRNAを抽出し、抽出されたRNAを例えばハイドロキシアパタイトカラムを利用して精製し、精製されたRNA100μgをM−MuLVリバーストランスクリプターゼとCy3−dCTPおよびCy5−dCTPを使用して40μlの標識反応液中で標識し、標識されたDNAを標的生体分子検出チップ1上に固定化された細菌やウイルスなどの塩基配列を含んだプローブ4と50℃で2時間ハイブリダイゼーション反応液中でハイブリダイゼーション反応し結合させ、2XSCC緩衝液で52℃にて洗浄し、洗浄後標的生体分子検出チップ1上に結合した標的生体分子のCy3とCy5を蛍光顕微鏡あるいは蛍光スキャナーなどを用いて検出することができる。
【0067】
図1(D)に示すように標的生体分子検出チップ1上に結合した標的生体分子を検出する際、標的生体分子が結合した撮像エリア2を、撮像手段6を用いて1回の撮影で撮像することによって、複数の標的生体分子を同時にムラ無く検出することができる。例えばCy3−dCTPおよびCy5−dCTPで標識されたDNAを検出する場合は、撮像手段6として蛍光スキャナーを用いることができ、Cy3を検出する場合は例えば励起光550nmの波長の光を出すLEDを励起光源として用いることで、Cy3は反射光として570nmの波長の光を反射する。反射された反射光を例えばバンドパスフィルターを通過させた後にCCDなどを用いて光電変換することによって定量することができる。このように励起光を照射して蛍光分子を検出する場合、蛍光分子の褪色により精度良く検出することが難しくなることがあり、さらに励起光をスキャンして計測する場合は、励起光が計測されていない蛍光分子に照射されることでさらに精度を悪化させてしまうが、一回の撮影で、全てのスポット5を撮像し、標的生体分子検出チップ1上の蛍光分子の分布を検出することができるので、蛍光分子の褪色による精度低下を招くことなく標的生体分子をする事ができる。
【0068】
図1(D)が示すように、撮像手段6で撮像された光学画像3は、撮像エリア2内で優先順位に基づいて配列されたスポット5に標的生体分子が結合したかどうかを示している。標的生体分子が結合したスポット5は陽性スポット7として観察される。例えば優先順位1〜12番まで配列されたスポット5の7番目までのスポット5上に標的生体分子が結合していることが検出され、陽性スポット7が優先順位7番目まで観察されれば優先順位の7番目までの標的生体分子が存在していることが一目で判断できる。例えば発症頻度から優先順位を設け1)腸管出血性大腸菌感染症、2)ウイルス性肝炎、3)細菌性赤痢、4)アメーバ赤痢、5)腸チフス、6)オウム病、7)コレラ、8)パラチフス、9)エキノコックス症、10)ペスト、11)マールブルグ病、12)ラッサ熱を配列した標的生体分子検出チップ1を用いた場合、コレラ以上の発症頻度が高い感染症に感染していることが一目で判断することができる。また、12個配列したスポット5の1点上のみに標的生体分子の結合が観察されれば、その感染症がどの程度の発症頻度であるか、発症頻度の統計データを知らない者であってもすぐに判断することができる。
【0069】
上記構成において、撮像手段6による撮影によって得られた光学画像3を確認することによって視覚的に容易にスポット5の同定ができ、また、陽性スポット7の位置から優先順位に基づいて検査結果を迅速に判断することができるため、診断を素早く行うことができるようになる。
【0070】
なお、スポット5の形状は円形に限らず、撮像エリア2内のスポット5密度を上げるために四角形や六角形などの形状のスポットを構築することもできる。例えば、半導体製造技術であるフォトリソグラフィーのフォトマスクを利用して標的生体分子検出チップ1上に四角形又は六角形になるように光を照射し、光反応を利用して四角形や六角形になるようにDNAを重合させプローブ4を固定化することができる。また、インクジェット方式でプローブ4溶液を標的生体分子検出チップ1上に描画する際、四角形や六角形など様々な形状のスポット5に描画することができ、撮像エリア2にスポット5を配置することができる。
【0071】
また、1つのスポット5内に固定化するプローブ4を同属の標的生体分子に対する混合プローブ4とし、同属の生体標的生体分子を検出することができる一つのスポット5とすることもできる。例えば、Pythium族菌は土壌や河川などの環境中に広く分布しており多種多様な菌種として100種類以上存在していることが知られている。これらPythium族の菌種がいるかいないか判断するための混合したプローブ4として、Pythium族であるP.aphanidermatum、P.arrhenomanes、P.graminicola、Pmyriotylum、P.sulcatum、P.torulosum、P.vanterpooliiの7種類に対するDNAをプローブ4として混合し、1つのスポット5内に固定化する。上記7種類の菌種の内1種類でも検体中に存在する場合は、混合したプローブ4が固定化されているスポット5内に結合するのでPythium族の菌が存在していることを検出することができる。また、住環境中に存在するダニのアレルゲンとして、ヤケヒョウヒダニとコナヒョウヒダニ由来のアレルゲンが存在しているがそれぞれのダニ由来のアレルゲンに対する抗体を混合し、同一のスポット5内に固定化することにって、ダニが存在するかどうかを検出することが可能なスポット5とすることができる。
【0072】
(実施の形態2)
図2は本発明の実施の形態2に記載の生体分子検出方法を示した図である。実施の形態1と同一部分については同一番号を附し詳細な説明は省略する。図2(A)は円状スポット8を配列した撮像エリア2を示しており、図2(B)は四角状スポット9を配列した撮像エリア2を示している。
【0073】
図2(A)が示すように撮像エリア2が円形である場合、円状スポット8を用いることによって撮像エリア2内に簡単に効率良く配置させることができるようになる。円状とは頂点を含まない円弧で構成された形状のことであり、真円が望ましく、また、円の内側全てにプローブ4が固定化されていることが望ましいが、楕円形状をしていても、円状スポット8の円外周部にのみプローブ4が固定化されていてスポット5の中心にはプローブ4が固定化されていないようなリング状のスポット5であってもかまわない。同じ間隔で四角状スポット9を配列させた場合、同じ撮像エリア2からはみだしたはみだし部分10が生じることがある。従って、撮像エリア2を円形にし小さくする場合は配列されるスポット5が円状であることが望ましい。撮像エリア2の形状を様々な形に変化させた場合、撮像エリア2内に最密度になるようにスポット5を配置させるためには、撮像エリア2の形状に依存してスポット5の形状を変化させなければならない。例えば四角形の撮像エリア2に対しては四角状のスポット5が最適であり、円形の撮像エリア2に対しては円状あるいは六角状のスポット5が適している。様々な形状の撮像エリア2を作成する場合は、撮像エリア2の形状に対応してスポット5の形状を対応させなければならないが、スポット5の形状を円状にしていれば様々な撮像エリア2に対応して最密度の配置に対応することができる。
【0074】
円状スポット8は、例えば抗体やDNAプローブなどを含んだ溶液をインクジェットなどで小さな液滴としてスライドガラスで構成される標的生体分子検出チップ1の上に滴下し物理吸着させることで形成させることができる。また、マイクロスポッタ−を用いてピン先に抗体やDNAプローブなどを含んだ溶液を一定量吐出させ、ピンを生体分子検出チップ1上につけることで形成させる方法も用いられ、簡単にスポット5を形成する方法として容易に利用することができる。円状スポット8の大きさとしては例えばDNAマイクロアレイの場合数十μm〜数百μmの直径が一般的であり、数十μm〜数百μmの間隙をあけて2次元平面上に配置される。
【0075】
上記構成において、円状スポット8を配列することによって、撮像エリア2内に効率良くたくさんのスポット5を形成させることができる。
【0076】
(実施の形態3)
図3は本発明の実施の形態3に記載の生体分子検出方法を示した図である。実施の形態1、2と同一部分については同一番号を附し詳細な説明は省略する。図3(A)は円状スポット8を14個配置する際、撮像エリア2を円形にし円形撮像エリア11としたものを示している。図3(B)は同じ大きさの円状スポット8を14個配置する際、撮像エリア2を四角形にし四角形撮像エリア12としたものを示している。図3(C)は円形撮像エリア11を撮影する際に光を照射する光照射エリア13を示しており、図3(D)は四角形撮像エリア12を撮影する際に光を照射する光照射エリア13を示している。
【0077】
図3(A)が示す円形撮像エリア11の長さaは図3(B)が示す四角形撮像エリア12の長さbに対して小さくなり、同じ大きさの円状スポット8を用いる場合は撮像エリア2を小さくすることができる。また、同じ面積の撮像エリア2とする場合は、配列する円状スポット8の数を増加することができ、あるいは、円状スポット8自身を大きくすることができる。
【0078】
図3(C)(D)が示すように、円形撮像エリア11を光学的に撮影する際、撮像手段6は光照射エリア13に光を照射する。撮像エリア2内を撮像するために、光照射エリア13は撮像エリア2より大きくする必要があるが、図3(C)のように円形撮像エリア11に対して光を照射する場合、光照射エリア13をあまり大きくしなくてもすむ。図3(D)のように四角形撮像エリア12に対して光を照射する場合は、光照射エリア13は円形になるため、光照射エリア13を大きく広げなければ四角形撮像エリア12全てをカバーすることができず、光照射エリア13内で、円状スポット8が存在していない部分が大きくなってしまう。このように撮像エリア2を円形撮像エリア11としたほうが、四角形撮像エリア12とするよりも効率良く光を照射することができるようになる。また、光学レンズを用いて撮像エリア2の撮影を行う際、レンズを使用しているので、獲得できる光学画像3は円形となる。従って、光照射と同様に、撮像時の集光に関しても、撮像エリア2を四角形撮像エリア12とするよりも、円形撮像エリア11としたほうが効率良く集光する事ができ、感度も良くなる。円形撮像エリア11とは例えば、直径が0.1mm〜4.0mmの大きさの円形であって、この中に数十μm〜数百μmの直径のスポットが配列されている。円形撮像エリア11が視覚的にわかりやすくなるように予め蛍光塗料などで色付けしておいても、標的生体分子検出チップ1上に段差を設け、例えば円形撮像エリア11を一段低くしたチップとしてもかまわない。
【0079】
上記構成において、撮像エリア2を円形撮像エリア11とすることによって、レンズを使って撮像エリア2を撮影する際、円形撮像エリア11から効率良く光を集めることができるため感度が上がり、円形撮像エリア11内に円状スポット8を効率良くたくさん配列できるため、1回の撮影によって標的生体分子を同時に精度良く検出することができるようになる。
【0080】
(実施の形態4)
図4は本発明の実施の形態4に記載の生体分子検出方法を示した図である。実施の形態1乃至3と同一部分については同一番号を附し詳細な説明は省略する。図4(A)はドーナツ形撮像エリア14を示しており、図4(B)はドーナツ形撮像エリア14を光学的に撮像する際の、光照射エリア13における光照射量を示している。
【0081】
図4(A)が示すように、例えば、円状スポット8を100個標的生体分子検出チップ1上に配置する際、配置される領域の面積重心点15の周囲には円状スポット8を配置せず、円状スポット8が配置されている領域がドーナツ形になるように配置し、ドーナツ形の配置領域をドーナツ形撮像エリア14とする。面積重心点15とはドーナツ形撮像エリア14の面積に対する重心点のことであり、撮像エリア2が円形でない場合であってもスポット5が配置されている領域の面積に対する重心となる点を指す。
【0082】
図4(B)が示すように、ドーナツ形撮像エリア14に対して光を照射する場合、光照射エリア13の光中心点16付近は光量が多くなり、一方光照射エリア13の周縁部は光量が弱くなる。光中心点16に近いほど照射される光量は多くなり、光中心点16から離れるほど少なくなる。しかしながら中心と外周部の中間付近は照射される光量の差が少なく安定した領域が生じる。円状スポット8が配置されている領域を図4(A)のようなドーナツ形撮像エリア14とし、ドーナツ形撮像エリア14に照射される光照射エリア13の光中心点16を面積重心点15と重ね合わせることによって、円状スポット8が配置されている領域に照射される光量のムラを減らすことができる。照射される光量に差があると、円状スポット8間で感度が異なってくるため、測定精度が悪くなってしまうが、撮像エリア2をドーナツ形撮像エリア14とすることによって、光照射量の差を減らし、円状スポット8間での感度差を減らすことで、精度良く計測できるようにすることができる。
【0083】
上記構成において、ドーナツ形撮像エリア14とすることによって、照射量及び、集光率が安定な領域を撮影することができ、精度良くスポットを検出できるようになる。
【0084】
(実施の形態5)
図5は本発明の実施の形態5に記載の生体分子検出方法を示した図である。実施の形態1乃至4と同一部分については同一番号を附し詳細な説明は省略する。図5(A)はそれぞれ中心から円周部に向かって優先順位が配列するように円形撮像エリア11にスポットを配置したものを示している。円形撮像エリア11の中心に優先順位の高いスポット5を配置し円周部に優先順位の低いスポット5を配置する。実施の形態1に示した方法で標的生体分子を検出する際、例えば図5(B)に示すように円形撮像エリア11の中心が陽性スポット7で円周部が陰性スポット17である場合は、検査実行者が光学画像3を見ることによって、優先順位の高い標的生体分子のみ存在しており優先順位の低い標的生体分子は存在していないと簡単に診断することができる。また、反対に中心が陰性スポット17で円周部が陽性スポット7である場合は、優先順位の高い標的生体分子は存在しておらず、優先順位の低い標的生体分子のみ存在していると簡単に診断することができる。
【0085】
図5(C)は中心から円周部に向かって配列している別のパターンを示している。中心から円周部に向かってらせん状に配置させることによって、よりスポットを同定しやすくなり陽性スポット7による螺旋が何回転しているかで、存在している標的生体分子の優先順位が一目で判断しやすくなる。
【0086】
上記構成において、中心から円周部に向かって優先順位が配列するように円形撮像エリア11にスポットを配置することによって、光学画像3から特定のスポット5を簡単に同定することができ検査結果による診断を迅速に行えるようになる。
【0087】
(実施の形態6)
図6(A)は本発明の実施の形態6に記載の生体分子検出方法に用いる平板状の基盤18に構成した標的生体分子検出チップ1を横側から見た図を示している。実施の形態1乃至5と同一部分については同一番号を附し詳細な説明は省略する。図6(B)は図6(A)に示した基盤18に構成した標的生体分子検出チップ1を撮像手段6で撮像するところを示している。
【0088】
基盤18としては例えばガラスや樹脂、金属などで構成されたもので平板状に成形され、表面粗さが調節されているものが利用される。例えば標的生体分子検出チップ1としてDNAマイクロアレイを利用する場合は、スライドガラスの基盤18の上に実施の形態1に記載した方法でプローブ4が固定化され、また、スライドガラスの表面粗さは日本工業規格JISB0610に規定されている。図6(B)に示すように平板状の基盤18に対して平行になるように撮像手段6を設置し、撮像エリア2を撮影することによって、撮像エリア2上に配置されているスポット5全てに対して焦点があった光学画像3を撮像することができる。基盤18がゆがんでいたり表面粗さが高い場合は撮像エリア2上のスポット5全てに対して焦点を合わせて光学画像3を撮像することができなくなる。本発明の標的生体分子検出方法は1回の撮像によって複数の標的生体分子を検出することを特徴としているため、撮像エリア2を平板状に保つことは重要となる。
【0089】
上記構成において、平滑面を有する平板状の基盤18で撮像エリア2を構成することによって、精度良く光学画像を得ることができ、光学画像から特定のスポットを簡単に同定することができ数値とスポット像の照合が簡単にでき、また、検査結果による診断を迅速に行えるようになる。
【0090】
(実施の形態7)
図7(A)は本発明の実施の形態7に記載の生体分子検出方法に用いるメンブレン19で構成された標的生体分子検出チップ1を横側から見た図を示している。実施の形態1乃至6と同一部分については同一番号を附し詳細な説明は省略する。図7(B)は図7(A)に示したメンブレン19で構成された標的生体分子検出チップ1を平滑基準面20に押し当てることによって、撮像エリア2を平滑面を有した平板状にする方法を示している。
【0091】
図7の(A)に示すようにメンブレン19の上に撮像エリア2を設けプローブ4を配置することによって、標的生体分子検出チップ1が変形可能になり取り扱いが楽になる。メンブレンとしてはナイロンメンブレンを利用することができナイロンメンブレン上に抗体やオリゴDNAプローブを固定したものが利用できる。標的生体分子検出チップ1がメンブレン19であるので、標的生体分子と反応させる際に例えばメンブレン19に圧電素子などを用いて振動を加え、プローブ4との反応性を促進させる事ができる。また、メンブレン19に0.2〜0.5μmの穴を多数あけ、溶液を濾過することのできる状態にすることもできる。標的生体分子検出チップをろ過メンブレンにすることによって、標的生体分子を反応させた後に反応液をろ過し、洗浄液で洗浄する際に同様に濾過させることによって操作性を上げることができる。メンブレン19を平滑基準面20に押し当てる方法としてはメンブレン19の両端を左右からピンセットなどで引っ張り、そのまま平滑基準面20に押し当てる方法がある。また、図7(C)に示したようにメンブレン19の外周部を外周部の形状をした治具21等で挟みメンブレンキット22とし、メンブレンキット22を平滑基準面20に押し当てる方法で簡単に平滑面を形成することができる。ここで、平滑面とは、実施の形態6に記載したように例えばDNAマイクロアレイとして利用する場合は、表面粗さが日本工業規格JISB0610の規定を満たしている平滑基準面20を用いることによって、ナイロンメンブレン自体は薄く強靭であるため簡単にJISB0610規格を満たした平滑面を形成することができる。
【0092】
上記構成において、取り扱いが楽で精度良く光学画像を得ることができ、検査結果による診断を迅速に行うことができるようになる。
【0093】
(実施の形態8)
図8は本発明の実施の形態8に記載の生体分子検出方法を示している。実施の形態1乃至7と同一部分については同一番号を附し詳細な説明は省略する。図8(A)は細胞周期の進行過程において機能する遺伝子産物を示しており、図8(B)は進行過程において機能する遺伝子産物の順番を進行度として順位付けたものを示しており、図8(C)は進行度に対応して順位付けられた優先順位に基づいて円形撮像エリア11に円状スポット8を配列したものを示しており、図8(D)は図8(C)の円形撮像エリア11を撮影した光学画像3を示している。
【0094】
図8(A)が示すように、真核細胞は分裂して増殖するために、DNAを複製し細胞分裂する細胞周期を持っている。細胞周期では各過程において働く遺伝子がわかっており、それぞれ、P27、サイクリンE、Cdc6、Wee1、セキュリン、サイクリンA、サイクリンB、サイクリンDがG1期、S期、G2期、M期に作用することがわかっている。
【0095】
図8(B)に示すように、例えば細胞周期の進行に伴って作用していく遺伝子産物の優先順位を1)P27、2)サイクリンE、3)Cdc6、4)Wee1、5)セキュリン、6)サイクリンA、7)サイクリンB、8)サイクリンDとする。
【0096】
図8(C)が示すように進行度に対応して順位付けられた優先順位に基づいて円形撮像エリア11に配列した標的生体分子検出チップ1を用いて動物細胞の標的生体分子としてP27、サイクリンE、Cdc6、Wee1、セキュリン、サイクリンA、サイクリンB、サイクリンDを検出する。
【0097】
図8(D)が示すように、光学画像3で陽性スポット7が優先順位1)の位置にあって2)〜8)の位置が陰性スポット17であれば検出結果はP27であるということがわかり、検査実行者は簡単に検査対象である動物細胞がG1期であることが診断できるようになる。
【0098】
上記構成において、優先順位が目的の診断結果の進行度に対応して順位付けられ、優先順位に基づいてスポット5を配列することによって、目的の診断結果の進行度に対応してスポットを並べることができ、標的生体分子が結合しているスポットの位置を見ることで進行度を容易に判断することができるようになり、検査結果を迅速に判断して診断できるようになる。
【0099】
(実施の形態9)
図9は本発明の実施の形態9に記載の生体分子検出方法を示している。実施の形態1乃至8と同一部分については同一番号を附し詳細な説明は省略する。図9(A)(B)は、撮像エリア2が方形である四角形撮像エリア12である標的生体分子検出チップ1の例を示している。図9(C)は四角形撮像エリア12を撮像手段6によって撮像する方法を示している。
【0100】
円状スポット8を四角形撮像エリア12内に配列する際、図9(A)が示すように中心から外周部に向かって優先順位が並ぶように配置することもでき、また、図9(B)が示すように左から右に一直線になるように配置することもできる。図9(A)や(B)のように配置することによって、撮像エリア2は方形となり四角形撮像エリア12を形成する。この撮像エリアを撮像手段6にて撮像する際、図9(C)に示した用に撮像手段6を標的生体分子検出チップ1に対して平行にして撮像するが、受光手段23としてCCDなどの2次元アレイを用いる場合光学画像3は図9(D)のように方形となり、四角形であるCCDの受光素子を無駄なく使用することができるようになる。
【0101】
上記構成において、撮像エリア2を四角形撮像エリア12とし、撮像手段6に利用されているCCDなどの四角形の受光手段23を利用して光学画像3を得る際、受光素子を無駄なく利用して効率良く四角形撮像エリア12内のスポット5を撮像することができるようになる。撮像手段6としては、撮像できれば良く、蛍光スキャナーなどがある。
【0102】
(実施の形態10)
図10は本発明の実施の形態10に記載の生体分子検出方法を示している。実施の形態1乃至9と同一部分については同一番号を附し詳細な説明は省略する。図10(A)(B)は、四角形撮像エリア12の1辺に沿って優先順位が配列するようにスポットを配置したものを示している。
【0103】
図10(A)はX軸に沿って配置したもので、1方向に優先順位が並んでいるため陽性スポット7の位置によってすぐに診断できるようになる。
【0104】
図10(B)はY軸とX軸に沿って配置した例を示しており、Y軸の上から下へ1)2)3)を配置し、1)2)3)のとなりに向かってX軸に沿って4)5)6)を配置している。このように段階的に配置していくことで、1)〜9)までの優先順位を3段階に分け1)〜3)を高度、4)〜6)を中度、7)〜9)を低度と分けることができる。例えば陽性スポット7が4)の位置にあった場合は、中程度の中でも重要な診断結果であると簡単に判断することができる。
【0105】
上記構成において、四角形撮像エリア12の1辺に沿って優先順位が配列するようにスポット5を配置することによって、視覚的に容易にスポット5を同定することができ、また、配置された優先順位に基づいて検査結果を迅速に判断できるようになる。
【0106】
(実施の形態11)
図11は本発明の実施の形態11に記載の光学読み取り装置24を示している。実施の形態1乃至10と同一部分については同一番号を附し詳細な説明は省略する。
【0107】
図11に示すように本発明の光学読み取り装置24は、少なくとも一つの光源25と受光手段23と標的生体分子検出チップ固定化手段26とスポット位置表示手段27と制御部28を含んでいる。光源25としてはレーザーやLEDなどが用いられ、通常光学フィルターを用いて一定波長の光が照射されるように調節されている。使用される光学フィルターとしては短波長カットフィルターや長波長カットフィルターやバンドパスフィルターが利用される。調節される波長領域としては530nm程度のグリーン光や、630nm程度のレッド光が単独または複数で使用されるが、これ以外の波長域であっても蛍光分子に対して干渉可能な波長域であれば何れの波長域であっても使用できる。複数のスポット5を含んだ標的生体分子検出チップ1を標的生体分子検出チップ固定化手段26に固定し、固定された標的生体分子検出チップ1の撮像エリア2に光源25から予め定められた波長域で励起光29が照射され、標的生体分子検出チップ1の撮像エリア2に励起光29が照射され、励起光29によって発せられる反射光30を受光手段23が受光する。受光手段23としては光電子倍増管や電荷結合素子(CCD)が使用される。例えば標的生体分子検出チップ1としてDNAマイクロアレイが用いられる場合、Cy3やCy5などの蛍光分子で標識されたDNA分子がスライドガラス上にそれぞれ独立し一定間隔で結合しており、これら蛍光分子あるいは発光分子はそれぞれ固有の吸収スペクトルと蛍光波長を持っており、蛍光分子に干渉する励起光源は蛍光分子の吸収スペクトルに対応した光源25が使用され、受光手段23には反射光の中から目的の波長を制限するための光学フィルターが併用される。例えばCy3やCy5から反射される蛍光はそれぞれ、570nm、670nmであるので、570nmまたは670nmの波長特性をもつ光を通過させる光学フィルターが併用される。また、光源25によって照射され発光した反射光30を受光する一定の時間を、例えば1秒〜10秒と設定することによって、スポット5の蛍光量が強すぎる場合から弱い時まで対応して受光することができる。なお、設定した一定の受光時間はスポット5の蛍光量に合わせて調節することができ、蛍光が弱い時は10秒以上に設定することができ、また、蛍光が強すぎる時は1秒以下に設定することができる。制御部28は光源25による励起光29のオンオフあるいは強弱を制御する。制御部28としては光源25と受光手段23とスポット位置表示手段27を制御するためのものであって、例えばCPUなどが使用される。標的生体分子検出チップ固定化手段26としてはスライドグラス上に作成されたDNAマイクロアレイを固定するためのスライドグラスを挟んで固定する治具で構成されており、また、マイクロウェルなどを固定する窪みを有した治具などが使用される。スポット位置表示手段27は光学画像3を表示し、例えば液晶モニターがある。制御部28は撮像された光学画像3を記憶し、測定者は記憶された光学画像3を呼び出してスポット位置表示手段27に表示することもできる。
【0108】
上記構成において、測定者が標的生体分子検出チップ1を標的生体分子検出チップ固定化手段26に固定し、制御部28を作動させることによって、標的生体分子検出チップ1の撮像エリア2に励起光29が照射され、反射光30が受光手段23によって受光され、1回の撮影によってスポット位置表示手段27に光学画像3として表示される。このように撮像エリア2の発光を受光手段23で1回の撮影によって撮像することよって、複数種類の標的生体分子を同時に迅速に検出することができるようになり、スポット5が撮像エリア2内に優先順位に基づいて配置されているため、撮影によって得られた光学画像3を確認することによって視覚的に容易にスポット5の同定ができ、また、配置された優先順位に基づいて検査結果を迅速に判断することができるようになる。
【0109】
なお、スポット位置表示手段27に表示する内容は撮像された光学画像3ではなく光学画像3に基づく診断結果を表示し、使用者が迅速に診断に用いることを可能にすることもできる。制御部28として、受光手段23によって撮像された光学画像3の診断フロー、すなわちスポット5の光量が設定したしきい値の範囲内の時蛍光していると判断し、蛍光量が少なすぎるスポット5あるいは多すぎるスポット5以外のスポット5を蛍光していないと判断し、スポット位置表示手段27にスポット5の存在を表示することができ、診断基準として設定されるしきい値として、例えば撮像される光学画像3を構成する各ピクセルの輝度が1〜255の段階で表示される場合、予めバックとなる非特異的信号の可能性が高いシグナルとして段階10の輝度値を持ったピクセルをしきい値以下とし、非表示とすることができ、また、異常信号の可能性が高いシグナルとして段階200以上の輝度値を持ったピクセルをしきい値以上とし、非表示とすることができ、また、スポット位置表示手段27に診断結果を表示し、検査実行者に診断結果を表示することもできる。例えば設定されたしきい値内のスポット5が撮像されたことを制御部28が認識し、スポット表示手段27に検出されたスポット5に結合している標的生体分子の名称をスポット位置表示手段27に表示することができる。制御部28としては、上記フロー、内容がプログラミングされたマイコンなどがある。例えばダニアレルゲンに対する抗体をプローブ4として固定化したスポット5と黴に対する抗体をプローブ4として固定化したスポット5とスギ花粉抗原に対する抗体をプローブ4として固定化したスポット5を持つ標的生体分子検出チップ1を測定し、撮像された光学画像3においてダニに対する抗体をプローブ4として固定化したスポット5のみ設定されたしきい値内の蛍光強度である場合、スポット位置表示手段27にダニが検出されたことを意味する「ダニ+」という診断結果を表示することができる。このようにスポット位置表示手段27に診断結果を表示することによって、検査実行者が検出結果を元に診断する操作が省略でき、より迅速に診断結果を得ることができるようになる。
【0110】
(実施の形態12)
図12は本発明の実施の形態12に記載の光学読み取り装置24を示している。実施の形態1乃至11と同一部分については同一番号を附し詳細な説明は省略する。実施の形態11に記載の内容と異なる点はスポット位置表示手段27が光学画像モニター31に代わった点である。
【0111】
光学画像モニターとしては例えばカラー液晶モニターであり、光学読み取り装置24によって撮像された光学画像3を写すことで、検査実行者に対して標的生体分子検出チップ1上の陽性スポット7の位置や、色の濃淡に関する情報を提供することができる。例えば標的生体分子検出チップ1としてDNAマイクロアレイを用いる場合は、例えばCy3やCy5などの赤や緑に蛍光したスポット5を蛍光強度に応じて光学画像モニターに表示することによって、検査実行者が、各スポット5の蛍光の強さや色について知ることができる。優先順位に基づいてスポット5が配置されているため、スポット5の蛍光の色や蛍光の強さとあわせることで、より診断しやすくなる。
【0112】
上記構成において、光学読み取り装置24に光学画像モニター31が取り付けられているので、標的生体分子検知チップ1を計測するためにコンピューターや画像出力装置などの他の機器を設置する必要が無く、撮像エリア2内のスポット5の光学画像3が光学画像モニター31内に映し出され、光学画像モニター31からスポット5の像が容易に同定でき、並んでいる優先順位に基づいて検査結果を迅速に判断することができるため、診断を素早く行うことができ、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい光学読み取り装置となる。
【0113】
(実施の形態13)
図13は本発明の実施の形態13に記載の光学読み取り装置24を示している。実施の形態1乃至12と同一部分については同一番号を附し詳細な説明は省略する。実施の形態12に記載の内容と異なる点はさらに標的生体分子検出チップ1上の光を集光する集光レンズ32をさらに備えた点である。
【0114】
図13が示すように、集光レンズ32としては、ストレートタイプのものや、多分岐タイプのガラスレンズが使用される。撮像エリア2からの反射光30は通常様々な方向へ拡散するので、受光手段23が受光する光量は撮像エリア2から発せられる反射光のうち一部となる。集光レンズ32を設けることによって受光手段23に到達できなかった反射光30を集めて受光手段23にて受光できるようになるため、反射光30が少ない場合であっても検知できるようになる。
【0115】
上記構成において、集光レンズ32を受光手段23の前段に配置することによって、高感度な光学読み取り装置1となる。また、小型で持ち運びが簡単にできて検査実行者が診断に用いやすい光学読み取り装置となるため、標的生体分子検出チップを用いた診断が簡便になるなる。
【0116】
(実施の形態14)
図14は本発明の実施の形態14に記載の光学読み取り装置24を示しており、図14(A)は、実施の形態13に記載の内容と異なる点は受光手段23が二次元アレイ33で構成されている点である。図14(B)は、この二次元アレイ33を示す図である。実施の形態1乃至13と同一部分については同一番号を附し詳細な説明は省略する。
【0117】
二次元アレイ33としては例えばCCDが用いられ、10万〜100万画素のCCDを用いて1.0mm↑2〜20.0mm↑2の撮像領域2を同時に撮像することができる。例えばDNAマイクロアレイを利用する場合、スポット5の大きさは数十μm〜数百μmの直径であるから、20個〜1000個程度のスポットが1.0mm↑2の撮像エリア2内に配置することができるので、二次元アレイの受光手段23を用いることによって20個〜20,000個のスポットを同時に撮像することができる。
【0118】
上記構成によって、二次元アレイ33で構成された受光手段23によって同時に複数種類の標的生体分子を検出することができるようになり、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすい光学読み取り装置となる。
【0119】
(実施の形態15)
図15は本発明の実施の形態15に記載の光学読み取り装置24を示しており、実施の形態14に記載の内容と異なる点は光源25がLED34で構成されている点である。実施の形態1乃至14と同一部分については同一番号を附し詳細な説明は省略する。
【0120】
LED34から照射され、励起光29によって撮像エリア2から発せられる反射光30を受光手段23が受光する。LED34としては、青、緑、黄色、赤色のLED34等が単独または複数で使用され、LED34の構造としてはダブルへテロ接合構造や量子井戸接合構造が用いられている。例えばDNAマイクロアレイを検出する際、Cy3あるいはCy5で標識されたスポット5を撮像する。蛍光分子がCy3の場合は緑色のLED34がCy5の場合は赤色のLED34が使用される。また、励起光の波長をより限定し蛍光シグナルを特異的に認知するために光学フィルターを併用して励起光29の波長を限定することもできる。
【0121】
上記構成において、LED34が少ない消費電流で励起光29を照射し、撮像エリア2を撮像することができ、撮像エリア2上の標的生体分子が劣化しにくいため標的生体分子検出チップ1の再計測が可能となり、また、LED34が光を照射するに当たり、発熱量が少なく装置への負担が少ないため装置寿命やDNAマイクロアレイの寿命が長くなる。また、光源25自体が小さくなるため蛍光読み取り装置1自体が小型可能になり、小型で持ち運びが簡単にでき、検査実行者が診断に用いやすくなる。
【産業上の利用可能性】
【0122】
本発明の生体分子検出方法および光学読み取り装置を用いることによって、DNAマイクロアレイなどの生体分子検知デバイスを効率良く検出し、その検出結果から素早く簡単に診断できるようになる。また、安価な装置構成となり、誰でも使うことのできる光学読み取り装置として広く普及させることができる。また、診断効率が上がることで、診断サービスの質が向上する。
【図面の簡単な説明】
【0123】
【図1】本発明の実施の形態1の生体分子検出方法を示す図
【図2】本発明の実施の形態2の生体分子検出方法を示す図
【図3】本発明の実施の形態3の生体分子検出方法を示す図
【図4】本発明の実施の形態4の生体分子検出方法を示す図
【図5】本発明の実施の形態5の生体分子検出方法を示す図
【図6】本発明の実施の形態6の生体分子検出方法を示す図
【図7】本発明の実施の形態7の生体分子検出方法を示す図
【図8】本発明の実施の形態8の生体分子検出方法を示す図
【図9】本発明の実施の形態9の生体分子検出方法を示す図
【図10】本発明の実施の形態10の生体分子検出方法を示す図
【図11】本発明の実施の形態11の光学読み取り装置を示す図
【図12】本発明の実施の形態12の光学読み取り装置を示す図
【図13】本発明の実施の形態13の光学読み取り装置を示す図
【図14】本発明の実施の形態14の光学読み取り装置を示す図
【図15】本発明の実施の形態15の光学読み取り装置を示す図
【図16】従来のハイブリダイゼーション反応検出方法及びその装置を示す図
【符号の説明】
【0124】
1 標的生体分子検出チップ
2 撮像エリア
3 光学画像
4 プローブ
5 スポット
6 撮像手段
7 陽性スポット
8 円状スポット
9 四角状スポット
10 はみだし部分
11 円形撮像エリア
12 四角形撮像エリア
13 光照射エリア
14 ドーナツ形撮像エリア
15 面積重心点
16 光中心点
17 陰性スポット
18 基盤
19 メンブレン
20 平滑基準面
21 外周部の形状をした治具
22 メンブレンキット
23 受光手段
24 光学読み取り装置
25 光源
26 標的生体分子検出チップ固定化手段
27 スポット位置表示手段
28 制御部
29 励起光
30 反射光
31 光学画像モニター
32 集光レンズ
33 二次元アレイ
34 LED




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013