米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 機械工学 -> 松下電器産業株式会社

発明の名称 ヒートポンプ給湯装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−17013(P2007−17013A)
公開日 平成19年1月25日(2007.1.25)
出願番号 特願2005−195909(P2005−195909)
出願日 平成17年7月5日(2005.7.5)
代理人 【識別番号】100097445
【弁理士】
【氏名又は名称】岩橋 文雄
発明者 藤高 章
要約 課題
圧縮機の吐出圧力上昇を抑え、異常温度上昇もなく、低消費電力量で貯湯槽の下部まで高温湯を貯湯し、貯湯槽の容量を有効に利用可能とすること。

解決手段
第1の給湯用熱交換器32、第1の絞り装置33、第2の給湯用熱交換器34、第2の絞り装置35、蒸発器36を設け、入水温度が高くなった場合に、第1の絞り装置33を閉方向に動作させ、第2の絞り装置35を開方向に動作させて、第2の給湯用熱交換器34に流入する冷媒圧力を低圧とすることにより、第2の給湯用熱交換器34を蒸発器として作用させるため、第1の給湯用熱交換器32出口の冷媒密度は高くなり、冷媒回路の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置を安全にかつ高効率で運転することができる。
特許請求の範囲
【請求項1】
圧縮機、第1の給湯用熱交換器、第1の絞り装置、第2の給湯用熱交換器、第2の絞り装置、蒸発器を順次接続した冷媒回路と、前記第2の給湯用熱交換器、前記第1の給湯用熱交換器を順次接続した給湯回路とを備え、前記第1の絞り装置と前記第2の絞り装置の開度を変更する制御装置を有することを特徴とするヒートポンプ給湯装置。
【請求項2】
第1の絞り装置と第2の絞り装置の開度の変更により、冷媒回路における冷媒循環量を調整することを特徴とする請求項1記載のヒートポンプ給湯装置。
【請求項3】
第2の給湯用熱交換器に流入する水の温度を検知する入水温度センサを備え、制御装置は、前記入水温度センサが検知した値と予め設定された所定値とを比較した後、第1の絞り装置の開度と第2の絞り装置の開度を変更することを特徴とする請求項1または2記載のヒートポンプ給湯装置。
【請求項4】
第2の給湯用熱交換器に流入する水の温度を検知する入水温度センサと、第1の給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサと、外気温度を検知する外気温度センサとを備え、制御装置は、前記入水温度センサで検知した値と前記出湯温度センサで検知した値と前記外気温センサで検知した値とに基づいて、第1の絞り装置の開度と第2の絞り装置の開度を変更することを特徴とする請求項1または2記載のヒートポンプ給湯装置。
【請求項5】
冷媒回路に第1の絞り装置をバイパスする二方弁を介したバイパス回路を設け、制御装置は、前記バイパス回路の二方弁の開閉動作と第2の絞り装置の開度の変更を行うことを特徴とする請求項1記載のヒートポンプ給湯装置。
【請求項6】
第2の給湯用熱交換器に流入する水の温度を検知する入水温度センサを備え、前記入水温度センサで検知した検知値に基づいて、バイパス回路の二方弁の開閉と第2の絞り装置の開度の変更を行うことを特徴とする請求項5記載のヒートポンプ給湯装置。
【請求項7】
第2の給湯用熱交換器に流入する水の温度を検知する入水温度センサと、第1の給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサと、外気温度を検知する外気温度センサとを備え、制御装置は、前記入水温度センサで検知した値と前記出湯温度センサで検知した値と前記外気温度センサで検知した値とに基づいて、前記バイパス回路の二方弁の開閉動作と第2の絞り装置の開度を変更することを特徴とする請求項5記載のヒートポンプ給湯装置。
【請求項8】
冷媒回路に、貯留冷媒量を調整する部位を有しないことを特徴とする請求項1〜7のいずれか1項に記載のヒートポンプ給湯装置。
【請求項9】
冷媒として炭酸ガスを用いたことを特徴とする請求項1〜8のいずれか1項に記載のヒートポンプ給湯装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は貯湯式のヒートポンプ給湯装置に関するものである。
【背景技術】
【0002】
従来、この種のヒートポンプ給湯装置は、図3に示すものがある(例えば、特許文献1参照)。
【0003】
図3は従来のヒートポンプ給湯装置の構成図である。図3において、圧縮機1、給湯用熱交換器2、絞り装置3、蒸発器4からなる冷媒回路と、貯湯槽5、循環ポンプ6、前記給湯用熱交換器2、補助加熱器19を接続した給湯回路からなり、前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記給湯用熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた給湯水を加熱する。
【0004】
そして、凝縮液化した冷媒は前記絞り装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1にもどる。一方、前記給湯用熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。
【0005】
そして、前記給湯用熱交換器2の入口水温が設定値に達すると水温検知器20が検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器19の単独運転に切り換えるものである。
【特許文献1】特開昭60−165157号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、上記のような従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その層は次第に拡大していく。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱されその境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。
【0007】
従って、沸き上げ運転完了近くになると、前記給湯用熱交換器2に流入する水温は高くなるため、前記圧縮機1の吐出圧力および吐出温度が上昇して、前記圧縮機1のモータの巻線温度の上昇など前記圧縮機1の耐久性が課題となる。そのため、前記給湯用熱交換器に流入する水温が低い状態で運転を停止していたため、前記貯湯槽5の下部が低温の水の状態で運転を停止することになり、前記貯湯槽5の湯容量を有効に利用できず、そのため、貯湯熱量は減少していた。
【0008】
また、貯湯熱量を増加するため、ヒートポンプ運転を停止した後、補助加熱器19の単独運転で貯湯熱量を増加する場合には、電気ヒータで加熱するため、消費電力が大きくなり、効率が悪くなっていた。
【0009】
本発明は前記従来の課題を解決するものであり、圧縮機の吐出圧力上昇を抑え、異常温度上昇もなく、低消費電力量で貯湯槽の下部まで高温湯を貯湯し、貯湯槽の容量を有効に利用可能とすることを目的とする。
【課題を解決するための手段】
【0010】
前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、圧縮機、第1の給湯用熱交換器、第1の絞り装置、第2の給湯用熱交換器、第2の絞り装置、蒸発器を順
次接続した冷媒回路と、前記第2の給湯用熱交換器、前記第1の給湯用熱交換器を順次接続した給湯回路とを備え、前記第1の絞り装置と前記第2の絞り装置の開度を変更する制御装置を有することを特徴とするもので、入水温度が低い場合は、第1の絞り装置を開方向に動作させ、第2の絞り装置を閉方向へ動作させ、第2の給湯用熱交換器に流入する冷媒圧力を高圧とすることにより、第2の給湯用熱交換器を放熱器として作用させ効率の高い運転を行い、沸き上げ運転完了近くになって入水温度が高くなった場合に、第1の絞り装置を閉方向に動作させ、第2の絞り装置を開方向に動作させて、第2の給湯用熱交換器に流入する冷媒圧力を低圧とし、第2の給湯用熱交換器を蒸発器として作用させることで、温度の比較的高い水と熱交換させ、第1の給湯用熱交換器に流入する入水温度を低くすることが出来、冷媒回路の圧縮機の吐出圧力を減少させることができる。
【発明の効果】
【0011】
本発明のヒートポンプ給湯装置は、冷媒回路の圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる効果がある。
【発明を実施するための最良の形態】
【0012】
第1の発明は、圧縮機、第1の給湯用熱交換器、第1の絞り装置、第2の給湯用熱交換器、第2の絞り装置、蒸発器を順次接続した冷媒回路と、前記第2の給湯用熱交換器、前記第1の給湯用熱交換器を順次接続した給湯回路とを備え、前記第1の絞り装置と前記第2の絞り装置の開度を変更する制御装置を有することを特徴とするもので、沸き上げ運転完了近くになって入水温度が高くなった場合に、第2の給湯用熱交換器を蒸発器として作用させることができるので、冷媒回路の圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。
【0013】
第2の発明は、第1の絞り装置と第2の絞り装置の開度の変更により、冷媒回路における冷媒循環量を調整することを特徴とするもので、部品点数を増やすことなく冷媒回路の圧縮機の吐出圧力や吐出温度を低減できる。
【0014】
第3の発明は、第2の給湯用熱交換器に流入する水の温度を検知する入水温度センサを備え、制御装置は、前記入水温度センサが検知した値と予め設定された所定値とを比較した後、第1の絞り装置の開度と第2の絞り装置の開度を変更することを特徴とするもので、入水温度が低い場合には、第2の給湯用熱交換器は放熱器として作用させるため、放熱量を多く取ることができ、ヒートポンプを高効率で運転することができる。
【0015】
第4の発明は、第2の給湯用熱交換器に流入する水の温度を検知する入水温度センサと、第1の給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサと、外気温度を検知する外気温度センサとを備え、制御装置は、前記入水温度センサで検知した値と前記出湯温度センサで検知した値と前記外気温センサで検知した値とに基づいて、第1の絞り装置の開度と第2の絞り装置の開度を変更することを特徴とするもので、入水温度と出湯温度と外気温度により、第1の絞り装置の開度を開方向に動作させ、第2の絞り装置の開度を閉方向に動作させる制御装置を設け、入水温度、出湯温度と外気温度により、第1の絞り装置を閉方向に動作させ、第2の絞り装置を開方向に動作させて、第2の給湯用熱交換器に流入する冷媒圧力を低圧とすることにより、第2の給湯用熱交換器を蒸発器として作用させることができ、冷媒回路の圧縮機の吐出圧力を減少させることができ、ヒートポンプをさらに高効率で運転することができる。
【0016】
第5の発明は、冷媒回路に第1の絞り装置をバイパスする二方弁を介したバイパス回路
を設け、制御装置は、前記バイパス回路の二方弁の開閉動作と第2の絞り装置の開度の変更を行うことを特徴とするもので、第2の絞り装置は、絞り開度を可変し、流量を制御できるので、低コストで冷媒回路の圧縮機の吐出圧力を減少させて、安全にかつ高効率で給湯水をより高温に加熱することができ、貯湯熱量を増大できる。
【0017】
第6の発明は、第2の給湯用熱交換器に流入する水の温度を検知する入水温度センサを備え、前記入水温度センサで検知した検知値に基づいて、バイパス回路の二方弁の開閉と第2の絞り装置の開度の変更を行うことを特徴とするもので、入水温度センサで検知した入水温度が設定値以上の場合に、二方弁を開方向に動作させ、第2の絞り装置の開度を閉方向に動作させるように制御するので、入水温度が低い場合には、第2の給湯用熱交換器は蒸発器として作用させるため、吸熱量を多く取ることができ、低コストでヒートポンプを高効率で運転することができる。
【0018】
第7の発明は、第2の給湯用熱交換器に流入する水の温度を検知する入水温度センサと、第1の給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサと、外気温度を検知する外気温度センサとを備え、制御装置は、前記入水温度センサで検知した値と前記第出湯温度センサで検知した値と前記外気温度センサで検知した値とに基づいて、前記バイパス回路の二方弁の開閉動作と第2の絞り装置の開度を変更することを特徴とするもので、入水温度と出湯温度と外気温度センサで検知した外気温度により、バイパス回路の二方弁を閉方向に動作させ、第2の絞り装置の開度を開方向に動作させるように制御するので、第2の給湯用熱交換器に流入する冷媒圧力を低圧とすることにより、第2の給湯用熱交換器を蒸発器として作用させることで、冷媒回路の圧縮機の吐出圧力を減少させることができ、低コストでヒートポンプを安全に高効率で運転することができる。
【0019】
第8の発明は、冷媒回路に、貯留冷媒量を調整する部位を有しないことを特徴とするもので、冷媒回路にレシーバやアキュムレータなどの余剰冷媒を貯留する容器を接続しないもので、機器を小型化することができる。
【0020】
第9の発明は、冷媒回路の冷媒として炭酸ガスを用いたので、給湯水の高温化を高効率で実現すると共に、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。
【0021】
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。なお、各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。
【0022】
(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。
【0023】
図1において、圧縮機31、第1の給湯用熱交換器32、第1の絞り装置33、第2の給湯用熱交換器34、第2の絞り装置35、蒸発器36を順に環状に接続し、冷媒として炭酸ガスを封入して冷媒循環回路を形成し、蒸発器36は、外気を送風するためのファン39を備えている。また、貯湯槽41、循環ポンプ42、第2の給湯用熱交換器34、第1の給湯用熱交換器32を順に接続した給湯回路を形成しており、圧縮機31より吐出された高温高圧の過熱ガス冷媒は第1の給湯用熱交換器32および第2の給湯用熱交換器34に流入し、ここで循環ポンプ42から送られてきた給湯水を加熱するようになっている。
【0024】
また、第2の給湯用熱交換器34に流入する入水温度を検知する入水温度センサ51と
第1の給湯用熱交換器32から流出する出湯温度を検知する第1の出湯温度センサ52と第2の給湯用熱交換器34から流出する出湯温度を検知する第2の出湯温度センサ53を設けてあり、各々の温度があらかじめ設定しある温度と比較して、第1の絞り装置33と第2の絞り装置35の開閉を制御する制御装置54を設置している。
【0025】
以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。
【0026】
通常の運転時は、第1の絞り装置の開度は全開に動作させ、第1の給湯用熱交換器32と第2の給湯用熱交換器34は放熱器として作用する。この時、圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、第1の給湯用熱交換器32と第2の給湯用熱交換器34で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、第2の絞り装置35で減圧され、低温低圧の冷媒となった後、蒸発器36に流入し、ここでファン39で送風された外気と熱交換して蒸発ガス化し、圧縮機1にもどる。一方、循環ポンプ42で送られた給湯水は第2の給湯用熱交換器34と第1の給湯用熱交換器32で加熱され、生成した湯は貯湯槽41の上部に流入し、上から次第に貯湯されていく。
【0027】
一方、沸き上げ運転時間の経過とともに貯湯槽41内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽41の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽41下部より循環ポンプ42を経て第2の給湯用熱交換器34に流入する水温は高くなってくる。
【0028】
表1に、冷媒としてCOを用い、中間期(室外気温16℃)で沸上温度が65℃の時の入水温度を変化させた場合のヒートポンプ給湯装置の運転効率(給湯能力/消費電力)と、圧縮機吐出温度、吐出圧力の変化を示す。
【0029】
【表1】


【0030】
この様に、入水温度が上昇すると、第2の給湯用熱交換器34では冷媒は流入する水温までしか放熱されないため、第2の給湯用熱交換器34出口の冷媒の密度は低く、高圧が上昇する。特に、レシーバや、圧縮機の吸入配管のアキュムレータなど冷媒回路の余剰冷媒を貯留する容器を用いない場合、高圧の上昇が大きい。また、CO2の臨界温度は31℃であり、第2の給湯用熱交換器34出口の冷媒温度が30℃を超えると、運転効率の低下が大きくなる。
【0031】
この時、入水温度センサ51で検知した入水温度が制御装置54にあらかじめ設定してある温度(例えば35℃)よりも上昇すると、第1の絞り装置33を閉方向に動作させ、第2の絞り装置35を開方向に動作させる。こうすることにより、第2の給湯用熱交換器34に流入する冷媒圧力を低圧とすることにより、第2の給湯用熱交換器34を蒸発器として作用させ、第2の給湯用熱交換器34で冷媒は低圧低温となり、貯湯槽41から流入する中温(例えば35℃)の水を低温(例えば15℃)に冷却し、第1の給湯熱交換器で
加熱され、貯湯槽上部に貯湯される。
【0032】
この時、第1の給湯用熱交換器の冷媒は第2の給湯用熱交換器により冷却された水により低温まで放熱できるため、第1の給湯用熱交換器出口の冷媒密度は高くなる。また、蒸発器入口の冷媒の乾き度も小さくなり、冷媒密度も高くなる。
【0033】
その結果、冷媒回路ので密度の高い冷媒が占める体積が大きくなるため、圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置の運転効率も高くなり、ヒートポンプ給湯装置を安全にかつ高効率で運転することができる。また、貯湯槽41の下部まで高温湯を貯湯でき、貯湯槽41の容量を有効に利用できる効果がある。さらにレシーバやアキュムレータなど冷媒回路の余剰冷媒を貯留する容器を用いなくても、吐出圧力を低減でき、機器の小型化が可能である。
【0034】
また、出湯温度が高い場合、冷媒回路の圧縮機31の吐出温度を高くする必要があるが、そのためには圧縮機31の吐出圧力も高くする必要がある。したがって、入水温度が上昇すると、出湯温度が高いほど圧縮機31の吐出圧力は高くなる。
表2に、冷媒としてCO2を用い、中間期(室外気温16℃)で沸上温度が90℃の時の入水温度を変化させた場合のヒートポンプ給湯装置の運転効率(給湯能力/消費電力)と、圧縮機吐出温度、吐出圧力の変化を示す。
【0035】
【表2】


【0036】
表2の様に、出湯温度が90℃と高い場合、表1の出湯温度が65℃の場合と比較し、圧縮機吐出温度、吐出圧力は高く、入水温度の上昇に対しては、表1と同様に、高圧が上昇し、運転効率は低下する。
【0037】
従って、入水温度センサ51で検知した入水温度と、第1の出湯温度センサ52で検知した出湯温度が、制御装置54にあらかじめ設定してある温度(例えば30℃)よりも上昇すると、第1の絞り装置33を閉方向に動作させ、第2の絞り装置35を開方向に動作させ、第2の給湯用熱交換器34に流入する冷媒圧力を低圧とし、第2の給湯用熱交換器34を蒸発器として作用させる。つまり、出湯温度が高い場合や、外気温度が高い場合など、圧縮機吐出温度や吐出圧力が高い場合は、入水温度がより低い温度で、第2の給湯用熱交換器34を蒸発器として作用させることにより、ヒートポンプ給湯装置の運転効率も高く、冷媒回路の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置をさらに安全にかつ高効率で運転することができる。
【0038】
また、外気温度が低いと、蒸発圧力が低下し、その蒸発圧力に対する飽和温度は低下するため、蒸発温度が低下する。蒸発温度が0℃以下の時に、入水温度センサ51で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇すると、第1の絞り装置33を閉方向に動作させ、第2の絞り装置35を開方向に動作させるが、第2の給湯
熱交換器34の出口水温が設定温度(例えば5℃)以下にならないように、第1の絞り装置33と第2の絞り装置35を動作させ、第2の給湯熱交換器34の水の凍結を防止する。
【0039】
その結果、低外気温でも給湯水の凍結を防止しながら、冷媒回路の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置を安全にかつ高効率で運転することができる。また、貯湯槽41の下部まで高温湯を貯湯でき、貯湯槽41の容量を有効に利用できる効果がある。
【0040】
(実施の形態2)
図2は、本発明の第2の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。図2において、図1と同様要素には同一の番号を付してある。ここで、図1と異なるのは、第1の絞り装置と並列に二方弁37を介したバイパス回路38と二方弁37の開閉を制御する制御装置54を設けたことである。
【0041】
以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。
【0042】
通常の運転では、バイパス回路38の二方弁37は開かれており、圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、第1の給湯用熱交換器32と第2の給湯用熱交換器34で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、第2の絞り装置35で減圧された後、蒸発器36に流入し、ここでファン39で送風された外気と熱交換して蒸発ガス化し、圧縮機31にもどる。一方、循環ポンプ42で送られた給湯水は第1の給湯用熱交換器32と第2の給湯用熱交換器34で加熱され、生成した湯は貯湯槽41の上部に流入し、上から次第に貯湯されていく。
【0043】
一方、沸き上げ運転時間の経過とともに貯湯槽41内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽41の下部にに拡大し、沸き上げ運転完了近くになると、貯湯槽41下部より循環ポンプ42を経て第2の給湯用熱交換器34に流入する水温は高くなってくる。
【0044】
この場合、入水温度センサ51で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇した場合には、バイパス回路38の二方弁37を閉方向に動作させ、第2の絞り装置の開度を開方向に動作させる。こうすることにより、第2の給湯用熱交換器34に流入する冷媒圧力を低圧とすることにより、第2の給湯用熱交換器34を蒸発器として作用させ、第2の給湯用熱交換器34で冷媒は低圧低温となり、貯湯槽41から流入する中温の水を低温に冷却し、第1の給湯熱交換器で加熱され、貯湯槽上部に貯湯される。
【0045】
この時、第1の給湯用熱交換器の冷媒は第2の給湯用熱交換器により冷却された水により低温まで放熱できるため、第1の給湯用熱交換器出口の冷媒密度は高くなる。
その結果、冷媒回路の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置を安全にかつ高効率で運転することができる。
【産業上の利用可能性】
【0046】
以上のように、本発明にかかるヒートポンプ給湯装置は、冷媒回路の圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができが可能となるので、高温風を得る空調機等の用途にも適用できる。
【図面の簡単な説明】
【0047】
【図1】本発明の実施の形態1におけるヒートポンプ給湯装置の構成図
【図2】本発明の実施の形態2におけるヒートポンプ給湯装置の構成図
【図3】従来のヒートポンプ給湯装置の構成図
【符号の説明】
【0048】
31 圧縮機
32 第1の給湯用熱交換器
33 第1の絞り装置
34 第2の給湯用熱交換器
35 第2の絞り装置
36 蒸発器
37 二方弁
38 バイパス回路
39 ファン
41 貯湯槽
42 循環ポンプ
51 入水温度センサ
52 第1の出湯温度センサ
53 第2の出湯温度センサ
54 制御装置
55 外気温度センサ




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013