米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 機械工学 -> 松下電器産業株式会社

発明の名称 ロータリ式膨張機及び流体機械
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−9755(P2007−9755A)
公開日 平成19年1月18日(2007.1.18)
出願番号 特願2005−189405(P2005−189405)
出願日 平成17年6月29日(2005.6.29)
代理人 【識別番号】100097445
【弁理士】
【氏名又は名称】岩橋 文雄
発明者 尾形 雄司 / 長谷川 寛 / 松井 大 / 岡市 敦雄 / 田村 朋一郎
要約 課題
複雑な流路を形成しなくても吸入容積を適宜に設定することのできるロータリ式膨張機を提供する。また、運転中に吸入容積を変更することのできるロータリ式膨張機を提供する。

解決手段
ロータリ式膨張機は、膨張室32を高圧側膨張室32aと低圧側膨張室32bとに仕切る仕切ベーン51を備えている。高圧側膨張室32aには、吸入口41aが形成されている。ロータリ式膨張機は、ベーン溝63から突出することによって吸入口41aの下流側を閉鎖する閉じ込みベーン61と、閉じ込みベーン61をベーン溝63内に没入した状態に保持するソレノイド64とを備えている。閉じ込みベーン61の保持を解除する時期を調整することにより、吸入容積が制御される。
特許請求の範囲
【請求項1】
内周面を有するシリンダと、
前記シリンダ内に偏心した状態で回転自在に配設され、前記シリンダの内周面との間に膨張室を区画する筒状のピストンと、
前記膨張室を高圧側と低圧側とに仕切る仕切部材と、を備え、
前記膨張室の高圧側、低圧側には、前記ピストンの回転に伴って開閉される吸入口、吐出口がそれぞれ形成され、
前記シリンダにおける前記膨張室の高圧側に対応する部分には、前記シリンダの内側に向かって延びるベーン溝が形成され、
前記ベーン溝に出没自在に挿入され、前記ベーン溝から突出して前記ピストンの外周面に当接することにより、前記膨張室における前記吸入口の下流側を閉鎖する閉じ込みベーンと、
前記閉じ込みベーンを前記ピストンに向かって付勢する付勢装置と、
前記閉じ込みベーンを前記ベーン溝内に保持する保持状態と、前記保持を解除する解除状態とを切替自在なベーン保持装置と、を備えたロータリ式膨張機。
【請求項2】
前記ベーン保持装置の保持状態から解除状態への切替タイミングを制御するコントローラを備えた請求項1に記載のロータリ式膨張機。
【請求項3】
前記ベーン保持装置は、前記ピストンの回転に伴って前記ピストンが前記閉じ込みベーンを前記ベーン溝に押し込んだ時から、前記閉じ込みベーンの保持を開始する、請求項1又は2に記載のロータリ式膨張機。
【請求項4】
前記閉じ込みベーンに設けられた永久磁石を備え、
前記ベーン保持装置は、磁界発生装置によって構成されている、請求項1〜3のいずれか一つに記載のロータリ式膨張機。
【請求項5】
前記閉じ込みベーンの少なくとも一部は磁性体からなり、
前記ベーン保持装置は、磁界発生装置によって構成されている、請求項1〜3のいずれか一つに記載のロータリ式膨張機。
【請求項6】
前記閉じ込みベーンに設けられた電磁石を備え、
前記ベーン保持装置は、磁界発生装置によって構成されている、請求項1〜3のいずれか一つに記載のロータリ式膨張機。
【請求項7】
前記磁界発生装置は、電磁石によって構成されている、請求項4〜6のいずれか一つに記載のロータリ式膨張機。
【請求項8】
前記ベーン保持装置は、前記閉じ込みベーンが前記ベーン溝に没入するときに前記電磁石に生じる誘起電流に基づいて前記閉じ込みベーンの保持を開始する、請求項7に記載のロータリ式膨張機。
【請求項9】
前記閉じ込みベーンには係合部が形成され、
前記ベーン保持装置は、前記閉じ込みベーンが前記ベーン溝内に位置するときに前記閉じ込みベーンの突出を阻止するように前記係合部と係合する係合部材を備えている、請求項1〜3のいずれか一つに記載のロータリ式膨張機。
【請求項10】
前記付勢装置は、前記ベーン溝内に配置され、前記閉じ込みベーンを前記ピストンに向かって常時付勢する弾性体によって構成されている、請求項1〜9のいずれか一つに記載のロータリ式膨張機。
【請求項11】
前記シリンダの前記膨張室の高圧側と低圧側との間の部分には、前記シリンダの内側に向かって延びる孔が形成され、
前記仕切部材は、前記孔にスライド自在に挿入され、前記孔から前記ピストンに向かって突出して前記ピストンの外周面に当接した仕切ベーンによって形成され、
前記孔内に配置され、前記仕切ベーンを前記ピストンに向かって常時付勢するばねを備え、
前記弾性体は、ばねによって形成されている、請求項10に記載のロータリ式膨張機。
【請求項12】
前記ベーン溝は前記孔と一体化され、
前記閉じ込みベーンと前記仕切ベーンとは、ともに前記孔内に挿入され、互いに平行に配置されている、請求項11に記載のロータリ式膨張機。
【請求項13】
前記シリンダの軸方向の一端を閉塞する閉塞部材を備え、
前記吸入口は、前記閉塞部材に形成され、
前記閉じ込みベーンは、前記ベーン溝から突出したときに前記吸入口を覆う、請求項1〜11のいずれか一つに記載のロータリ式膨張機。
【請求項14】
前記流体は二酸化炭素である、請求項1〜13のいずれか一つに記載のロータリ式膨張機。
【請求項15】
請求項1〜14のいずれか一つに記載のロータリ式膨張機と、
前記ロータリ式膨張機の回転軸に連結された回転軸を有する圧縮機と、
を備えた流体機械。
【請求項16】
前記ロータリ式膨張機の回転軸と前記圧縮機の回転軸とは同軸状に配置され、
前記ロータリ式膨張機及び前記圧縮機を共に収容するケーシングを備えている、請求項15に記載の流体機械。
発明の詳細な説明
【技術分野】
【0001】
本発明は、流体を膨張させるロータリ式膨張機と、流体を膨張させるロータリ式の膨張機及び流体を圧縮する圧縮機を備えた流体機械とに関するものである。
【背景技術】
【0002】
従来より、例えば冷凍装置等において、ロータリ式の膨張機が用いられている。ロータリ式の膨張機は、シリンダと、シリンダの内部に偏心した状態で配置され、シリンダ内周面に摺接しながら回転(厳密には公転)する筒状のピストンと、ピストンの内部に挿入された偏心部を有する回転軸とを備えている。シリンダ内には、ピストンとシリンダ内周面とによって膨張室が区画される。そして、シリンダ内でピストンが回転することによって、膨張室の容積が変化し、膨張室に対する流体の吸入及び膨張室内における流体の膨張が行われる。
【0003】
ところで、流体を膨張させるためには、流体をいったん膨張室に吸入した後、吸入口を閉じたうえで膨張室の容積を増大させる必要がある。すなわち、流体を膨張室に吸入する期間、言い換えれば、吸入口を開いている時間をなんらかの手段で設定する必要がある。
【0004】
下記特許文献1及び2には、流体を膨張室に吸入する期間(以下、単に吸入期間という)をピストンの回転位置に基づいて設定する方法が開示されている。特許文献1及び2に開示されたロータリ式膨張機では、シリンダ及び回転軸の偏心部の一端を閉塞するフロントヘッドに、膨張前の冷媒を導入する流入ポートと、膨張室に連通する溝状通路とが形成されている。一方、回転軸の偏心部のフロントヘッド側の面には、上記流入ポートと溝状通路とを連通させる連通路が形成されている。
【0005】
上記ロータリ式膨張機では、ピストンが所定範囲の位置にあると、連通路が吸入ポート及び溝状通路と重なり、連通路及び溝状通路を介して吸入ポートと膨張室とが連通する。一方、ピストンが上記所定範囲の位置にないと、連通路が吸入ポート又は溝状通路から離れ、吸入ポートと膨張室との連通が遮断される。このように、上記ロータリ式膨張機では、ピストンの回転に伴ってフロントヘッドの溝状通路を連通又は遮断することにより、冷媒を膨張室に吸入する期間を設定していた。
【特許文献1】特開2004−44569号公報
【特許文献2】特開2004−197640号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、上記ロータリ式膨張機では、フロントヘッドに流入ポート及び溝状通路を形成するとともに、回転軸の偏心部に連通路を形成することが必要であった。すなわち、膨張室に冷媒を吸入するために、複雑な流路が別途必要であった。そのため、冷媒の吸入圧力損失が大きくなりがちであった。
【0007】
また、上記ロータリ式膨張機では、冷媒を膨張室に吸入する期間は、連通路の構成により一義的に定まっていた。そのため、膨張機の吸入容積(すなわち、膨張開始時点の膨張室の容積)を変更することはできなかった。
【0008】
本発明はかかる点に鑑みてなされたものであり、本発明の目的の一つは、複雑な流路を形成しなくても吸入期間を適宜に設定することができるロータリ式膨張機及び流体機械を提供することである。また、本発明の他の目的は、吸入容積を変更することのできるロータリ式膨張機及びそれを備えた流体機械を提供することである。
【課題を解決するための手段】
【0009】
本発明に係るロータリ式膨張機は、内周面を有するシリンダと、前記シリンダ内に偏心した状態で回転自在に配設され、前記シリンダの内周面との間に膨張室を区画する筒状のピストンと、前記膨張室を高圧側と低圧側とに仕切る仕切部材と、を備え、前記膨張室の高圧側、低圧側には、前記ピストンの回転に伴って開閉される吸入口、吐出口がそれぞれ形成され、前記シリンダにおける前記膨張室の高圧側に対応する部分には、前記シリンダの内側に向かって延びるベーン溝が形成され、前記ベーン溝に出没自在に挿入され、前記ベーン溝から突出して前記ピストンの外周面に当接することにより、前記膨張室における前記吸入口の下流側を閉鎖する閉じ込みベーンと、前記閉じ込みベーンを前記ピストンに向かって付勢する付勢装置と、前記閉じ込みベーンを前記ベーン溝内に保持する保持状態と、前記保持を解除する解除状態とを切替自在なベーン保持装置と、を備えたものである。
【0010】
上記ロータリ式膨張機では、ピストンの回転に伴って吸入口が開閉され、この吸入口を通じて膨張室に流体が吸入される。流体が吸入された後、膨張室の容積はピストンの回転に伴って増大する。そのため、上記閉じ込みベーンがなければ、吸入口がピストンによって閉鎖された時点の膨張室の容積が吸入容積となり、吸入容積は一義的に定まることになる。
【0011】
しかしながら、上記ロータリ式膨張機では、膨張室内の吸入口の下流側を閉鎖する閉じ込みベーンが設けられている。そして、閉じ込みベーンの保持を解除すると、付勢装置によって閉じ込みベーンはピストンに向かって付勢され、ピストンの外周面に当接する。これにより、膨張室内の閉じ込みベーンの上流側が閉鎖され、膨張室(厳密には、閉じ込みベーンの下流側)に対する流体の吸入は停止される。したがって、上記ロータリ式膨張機によれば、複雑な流路を形成しなくても、閉じ込みベーンの保持を解除する時期に基づいて、吸入期間を適宜に設定することができ、吸入容積を適宜に設定することができる。
【0012】
前記ロータリ式膨張機は、前記ベーン保持装置の保持状態から解除状態への切替タイミングを制御するコントローラを備えていることが好ましい。
【0013】
このことにより、運転中又は運転停止中に吸入期間を調整することができ、吸入容積を変更することが可能となる。そのため、例えば、運転中に吸入容積を適宜変更することにより、運転状態に応じて膨張比を制御することができる。したがって、当該膨張機を組み込んだ流体システム(例えば冷凍装置等)に対して高度な制御を行うこと等が可能となる。
【0014】
前記ベーン保持装置は、前記ピストンの回転に伴って前記ピストンが前記閉じ込みベーンを前記ベーン溝に押し込んだ時から、前記閉じ込みベーンの保持を開始してもよい。
【0015】
上記ロータリ式膨張機では、ピストンはシリンダの内周面に沿って回転移動する。そのため、閉じ込みベーンは、いったんシリンダから突出した後、ピストンの回転に伴って、当該ピストンによってベーン溝に押し込まれることになる。閉じ込みベーンがベーン溝に押し込まれると、当該閉じ込みベーンによる膨張室の閉鎖は解除され、吸入口を通じて膨張室に流体を吸入することが可能となる。ここで、閉じ込みベーンを押し込む時のピストンの回転位置は、一義的に定まっている。そのため、ベーン溝に押し込まれた時から閉じ込みベーンの保持を開始することにより、閉じ込みベーンの閉鎖を解除するタイミングが常に一定となり、流体の吸入開始時が正確に設定される。
【0016】
前記ロータリ式膨張機は、前記閉じ込みベーンに設けられた永久磁石を備え、前記ベーン保持装置は、磁界発生装置によって構成されていてもよい。
【0017】
あるいは、前記閉じ込みベーンの少なくとも一部は磁性体からなり、前記ベーン保持装置は、磁界発生装置によって構成されていてもよい。
【0018】
あるいは、前記ロータリ式膨張機は、前記閉じ込みベーンに設けられた電磁石を備え、前記ベーン保持装置は、磁界発生装置によって構成されていてもよい。
【0019】
このことにより、磁界発生装置が発生する磁界の有無又は強弱によって、閉じ込みベーンの保持状態と解除状態とが切り替えられる。
【0020】
前記磁界発生装置は、電磁石によって構成されていてもよい。
【0021】
前記ベーン保持装置は、前記閉じ込みベーンが前記ベーン溝に没入するときに前記電磁石に生じる誘起電流に基づいて前記閉じ込みベーンの保持を開始してもよい。
【0022】
閉じ込みベーンがベーン溝に没入する際には、電磁石に誘起電流が生じる。そのため、この誘起電流に基づくことにより、閉じ込みベーンがベーン溝に没入するタイミングを正確に把握することができる。したがって、閉じ込みベーンの解除状態から保持状態への切替タイミングを正確に設定すること等が可能となる。
【0023】
前記閉じ込みベーンには係合部が形成され、前記ベーン保持装置は、前記閉じ込みベーンが前記ベーン溝内に位置するときに前記閉じ込みベーンの突出を阻止するように前記係合部と係合する係合部材を備えていてもよい。
【0024】
このことにより、閉じ込みベーンがベーン溝内に位置しているときに係合部材が閉じ込みベーンの係合部と係合することによって、閉じ込みベーンの突出が阻止される。その結果、閉じ込みベーンは保持状態となる。一方、係合部材が閉じ込みベーンの係合部から離脱すると、閉じ込みベーンは付勢装置からの付勢力によってベーン溝から突出する。その結果、閉じ込みベーンは解除状態となる。
【0025】
前記付勢装置は、前記ベーン溝内に配置され、前記閉じ込みベーンを前記ピストンに向かって常時付勢する弾性体によって構成されていてもよい。
【0026】
このことにより、付勢装置を簡単な構成で実現することができる。また、付勢装置を安価に構成することができる。
【0027】
前記シリンダの前記膨張室の高圧側と低圧側との間の部分には、前記シリンダの内側に向かって延びる孔が形成され、前記仕切部材は、前記孔にスライド自在に挿入され、前記孔から前記ピストンに向かって突出して前記ピストンの外周面に当接した仕切ベーンによって形成され、前記孔内に配置され、前記仕切ベーンを前記ピストンに向かって常時付勢するばねを備え、前記弾性体はばねによって形成されていてもよい。
【0028】
このことにより、仕切部材(仕切ベーン)と閉じ込みベーンとが同一の構成となり、仕切部材と閉じ込みベーンとの間において部品の共通化を図ることができる。
【0029】
前記ベーン溝は前記孔と一体化され、前記閉じ込みベーンと前記仕切ベーンとは、ともに前記孔内に挿入され、互いに平行に配置されていてもよい。
【0030】
このことにより、仕切ベーンと閉じ込みベーンとが、同一の孔内において隣り合って配置されるので、膨張室内における仕切ベーンと閉じ込みベーンとの間の空間、すなわち流体の膨張に寄与しないスペースを減らすことができる。
【0031】
前記ロータリ式膨張機は、前記シリンダの軸方向の一端を閉塞する閉塞部材を備え、前記吸入口は、前記閉塞部材に形成され、前記閉じ込みベーンは、前記ベーン溝から突出したときに前記吸入口を覆うものであってもよい。
【0032】
このことにより、膨張室内における閉じ込みベーンと吸入口との間の空間、すなわち流体の膨張に寄与しないスペースを減らすことができる。
【0033】
前記流体は二酸化炭素であってもよい。
【0034】
本発明に係る流体機械は、前記ロータリ式膨張機と、前記ロータリ式膨張機の回転軸に連結された回転軸を有する圧縮機と、を備えたものである。
【0035】
上記流体機械では、ロータリ式膨張機と圧縮機とが連結されているので、ロータリ式膨張機の回転数を独立して制御することができない。そのため、回転数を制御しなくても膨張機の吸入容積を変更できるという本発明の効果が顕著に発揮される。
【0036】
前記ロータリ式膨張機の回転軸と前記圧縮機の回転軸とは同軸状に配置され、前記流体機械は、前記ロータリ式膨張機及び前記圧縮機を共に収容するケーシングを備えていてもよい。
【0037】
このことにより、圧縮機とロータリ式膨張機とが一体化された流体機械において、前述の効果を得ることができる。
【発明の効果】
【0038】
以上のように、本発明によれば、複雑な流路を形成しなくても吸入期間を適宜に設定することのできるロータリ式膨張機及び流体機械を得ることができる。
【0039】
また、本発明によれば、吸入容積の変更が可能となる。したがって、例えば運転中に吸入容積を変更することにより、当該ロータリ式膨張機又は流体機械を組み込んだ流体システムに対して高度な制御を行うこと等が可能となる。
【発明を実施するための最良の形態】
【0040】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0041】
(第1の実施形態)
図1に示すように、冷凍サイクル装置は、圧縮機101と放熱器102と膨張機103と蒸発器104とが順に接続されてなる冷媒回路100を備えている。この冷媒回路100には、高圧部分(圧縮機101から放熱器102を経て膨張機103に至る部分)において超臨界状態となる冷媒が充填されている。本実施形態では、そのような冷媒として二酸化炭素(CO)が充填されている。ただし、冷媒の種類は特に限定されるものではない。上記冷媒回路100の冷媒は、運転時に超臨界状態とならない冷媒(例えば、フロン系冷媒等)であってもよい。
【0042】
また、膨張機103が組み込まれた冷媒回路は、冷媒を一方向にのみ流通させるような冷媒回路100に限られない。膨張機103は、冷媒の流通方向の変更が可能な冷媒回路に設けられていてもよい。例えば、膨張機103は、四方弁等を有することによって暖房運転及び冷房運転の可能な冷媒回路に設けられていてもよい。
【0043】
上記冷凍サイクル装置には、圧縮機101及び膨張機103を制御するコントローラ106が設けられている。
【0044】
圧縮機101の形式等は何ら限定されない。圧縮機101として、例えば、ロータリ式圧縮機、スクロール式圧縮機等を好適に用いることができる。
【0045】
膨張機103は、吸入管16を介して放熱器102と接続されている。また、膨張機103は、吐出管17を介して蒸発器104と接続されている。この膨張機103には、冷媒の膨張エネルギーによって発電を行う発電機105が内蔵されている。ただし、発電機105は膨張機103の外部に設けられていてもよい。また、発電機105は必ずしも必要ではなく、省略することも可能である。
【0046】
図2に示すように、膨張機103はロータリ式膨張機である。膨張機103は、密閉容器11と、密閉容器11内に収容された発電機105及び膨張機構20とを備えている。
【0047】
密閉容器11の上壁には、吸入管16が接続されている。吸入管16は、密閉容器11の上壁を貫通し、密閉容器11の内部空間に開口している。また、密閉容器11の上壁には、図示しない電気ケーブル等が接続された端子18が固定されている。
【0048】
発電機105は、密閉容器11の側壁に固定された固定子13と、固定子13の内側に配置された回転子14とから構成されている。固定子13は、配線9を介して端子18と接続されている。回転子14の中心部には、回転軸15が固定されている。回転軸15は、回転子14から下方に向かって延びている。膨張機構20は、回転軸15の下側に配置されている。
【0049】
密閉容器11の底部には、潤滑油を貯留する油溜まり19が形成されている。回転軸15の下端部は、この油溜まり19内に配置されている。回転軸15の下端部には図示しない油ポンプが形成され、回転軸15の内部又は外周部には、図示しない給油通路が形成されている。回転軸15が回転すると、油溜まり19の潤滑油は上記油ポンプによって汲み上げられ、上記給油通路を通じて膨張機構20の摺動部に供給される。
【0050】
膨張機構20は、略円筒状に形成されたシリンダ30(図3参照)と、シリンダ30の上端を覆う第1の閉塞部材21と、シリンダ30の下端を覆う第2の閉塞部材22と、シリンダ30内に配置されたピストン31とを備えている。
【0051】
図3に示すように、シリンダ30には、当該シリンダ30の内周面30aに形成された吐出口44aと、吐出口44aから径方向外向きに延びる吐出通路44とが形成されている。吐出管17は、密閉容器11の側壁を貫通しており、シリンダ30の吐出通路44につながっている。
【0052】
ピストン31は、シリンダ30よりも径の小さな円筒状に形成され、シリンダ30内に回転自在に配置されている。なお、ここでいう回転とは、厳密には公転のことであり、ピストン31自体は自転してもよく、自転しなくてもよい。シリンダ30の内側には、シリンダ30の内周面30aとピストン31の外周面31aとにより、膨張室32が区画されている。
【0053】
シリンダ30における吐出通路44の隣には、シリンダ30の径方向に沿って内側に延びるベーン溝53と、ベーン溝53内にスライド自在に設けられた仕切ベーン51と、仕切ベーン51をピストン31に向かって付勢するばね52とが設けられている。ばね52はベーン溝53内に圧縮状態で配置されており、ばね52の一端はベーン溝53内に支持され、他端は仕切ベーン51の根元部に支持されている。仕切ベーン51は、シリンダ30からピストン31に向かって出没自在であり、ピストン31の外周面31aに当接している。仕切ベーン51は、ばね52の付勢力によって、ピストン31に対して常に当接している。この仕切ベーン51は、膨張室32を高圧側の膨張室32aと低圧側の膨張室32bとに仕切っている。なお、吐出通路44の吐出口44aは、低圧側の膨張室32bに開口している。
【0054】
ピストン31の内側には、回転軸15の偏心部15a(図2参照)が挿入されている。偏心部15aはピストン31の内周面に摺動自在であり、ピストン31の回転に従って回転駆動される。すなわち、高圧側膨張室32a内で冷媒が膨張すると、冷媒の膨張エネルギーを受けたピストン31は、シリンダ30の内周面30aと接触しながらシリンダ30内を回転移動する。そして、ピストン31内に挿入された偏心部15aもピストン31と共に回転移動し、その結果、回転軸15が回転する。
【0055】
図2に示すように、第1の閉塞部材21には、低圧側膨張室32bと密閉容器11の内部空間とを連通する吸入路41が形成されている。吸入路41は、密閉容器11内の高圧の冷媒を低圧側膨張室32bに導入する流路である。図3に示すように、吸入路41の下流端開口である吸入口41aは、低圧側膨張室32b内における仕切ベーン51の近傍に開口している。また、吸入口41aは、シリンダ30の軸方向と平行な方向(図2における下向き方向。図3における紙面表向き方向)に開口している。
【0056】
シリンダ30の吸入口41aよりも下流側の部分には、シリンダ30の径方向に沿って内側に延びるベーン溝63と、ベーン溝63内にスライド自在に設けられた閉じ込みベーン61と、閉じ込みベーン61をピストン31に向かって付勢するばね62とが設けられている。ばね62はベーン溝63内に圧縮状態で配置されており、ばね62の一端はベーン溝63内に支持され、他端は閉じ込みベーン61の根元部に支持されている。本実施形態では、閉じ込みベーン61は磁性体によって構成されている。ベーン溝63の周囲には、磁界発生装置としてソレノイド64が配置されている。ただし、磁界発生装置の種類は何ら限定されず、ソレノイド64以外のものであってもよい。
【0057】
図4に示すように、ソレノイド64が非通電状態のときには、閉じ込みベーン61はばね62の付勢力によってベーン溝63から突出し、ピストン31に当接する。この場合、膨張室32aの閉じ込みベーン61よりも下流側の部分は、閉じ込みベーン61によって吸入口41aから遮断される。そのため、吸入口41aが開いていたとしても、膨張室32aに対する冷媒の吸入は停止される。
【0058】
一方、図3に示すように、閉じ込みベーン61がベーン溝63内に没入しているときにソレノイド64に電流を流すと、ベーン溝63内に磁界が発生し、閉じ込みベーン61は電磁力によってベーン溝63内に保持される。すなわち、ソレノイド64が通電状態のときには、閉じ込みベーン61にばね62の付勢力に対抗する力が与えられ、閉じ込みベーン61の突出が阻止される。この場合、冷媒は吸入口41aを通じて膨張室32a(詳しくは、閉じ込みベーン61の下流側)に流入する。
【0059】
したがって、本膨張機103では、ピストン31が一回転する間にソレノイド64に対する通電及び非通電を切り替えることにより、閉じ込みベーン61をベーン溝63内に保持する状態(保持状態)と、その保持を解除することによって閉じ込みベーン61をベーン溝63から突出させる状態(解除状態)とを適宜切り替えることができる。
【0060】
次に、膨張機103の動作について説明する。図2に示すように、本膨張機103では、吸入管16から吸入された高圧の冷媒は、いったん密閉容器11の内部空間に放出される。そして、密閉容器11内の高圧冷媒は、第1の閉塞部材21の吸入路41を流れ、吸入口41aから膨張室32aに流入する。
【0061】
図3に示すように、ピストン31は、仕切ベーン51側から閉じ込みベーン61側に向かって(図3における反時計回り方向に)回転する。この際、吸入口41aは、ピストン31の回転に伴って当該ピストン31によって開閉される。すなわち、ピストン31が吸入口41aを閉鎖する位置(吸入口41aとピストン31とが上下に重なる位置)にあるときには、吸入口41aからの冷媒の吸入は停止され、ピストン31が吸入口41aを閉鎖しない位置にあるときには、吸入口41aから冷媒が吸入される。
【0062】
さらに、本膨張機103では、ピストン31が吸入口41aを開いてから所定の回転位置に達すると、コントローラ106がソレノイド64の通電を停止し、閉じ込みベーン61の保持状態を解除する。その結果、閉じ込みベーン61がベーン溝63から突出し、ピストン31と当接する。これにより、吸入口41a自体は閉鎖されていないにも拘わらず、膨張室32に対する冷媒の吸入は停止される。
【0063】
本膨張機103においては、ピストン31が吸入口41aを開いた時が膨張室32の吸入開始時となり、閉じ込みベーン61が突出してピストン31と当接した時が膨張室32の吸入終了時となる。そして、上記吸入開始時から上記吸入終了時までの期間が吸入期間となる。また、閉じ込みベーン61がピストン31と当接した時の膨張室32a(厳密には、閉じ込みベーン61の下流側)の容積が、吸入容積となる。したがって、閉じ込みベーン61の保持を解除するタイミングに基づいて、吸入期間及び吸入容積を制御することができる。
【0064】
冷媒の吸入を終了した後は、ピストン31の回転に従って高圧側膨張室32aの容積が増大する。これにより、冷媒が高圧側膨張室32a内で膨張し、冷媒の圧力は低下する。ピストン31が更に回転すると、高圧側膨張室32aは吐出口44aと連続し、低圧側膨張室32bとなる。その結果、当該膨張室32b内の冷媒は吐出口44aを通じて吐出通路44に吐出される。そして、吐出通路44に吐出された低圧冷媒は、吐出管17を通じて膨張機103の外部に吐出される。
【0065】
前述したように、ピストン31はシリンダ30の内周面30aと接触しながら、シリンダ30内を回転移動する。そのため、ピストン31が所定位置(図3の左斜め上の位置)に達すると、閉じ込みベーン61はピストン31によってベーン溝63内に押し込まれる。本実施形態では、閉じ込みベーン61がベーン溝63内に押し込まれると、ソレノイド64に電流を流し、閉じ込みベーン61の保持を開始する。
【0066】
ところで、本実施形態においては、閉じ込みベーン61がベーン溝63内に押し込まれると、ソレノイド64に誘起電流が発生する。そのため、この誘起電流を検出することにより、閉じ込みベーン61がベーン溝63内に押し込まれた時期、言い換えると、ピストン31が上記所定位置に到達した時期を検出することができる。そこで、本実施形態では、上記誘起電流に基づいて、解除状態から保持状態の切替を行うこととしている。
【0067】
以上のように、本実施形態によれば、閉じ込みベーン61の保持を解除する時期(具体的には、ソレノイド64の通電を停止する時期)に基づいて、冷媒の吸入期間を設定することができる。したがって、閉じ込みベーン61の保持を解除する時期に基づいて、吸入容積を適宜に設定することが可能となる。
【0068】
なお、吸入容積は一定の設計値に設定してもよいが、運転中又は運転停止中に吸入容積を変更するようにしてもよい。本膨張機103では、閉じ込みベーン61の保持を解除する時期を自由に調整することができるので、吸入容積を自由に制御することが可能である。例えば、冷凍サイクル装置の運転中に、コントローラ106によって膨張機構20の吸入容積を調整し、膨張比を逐次制御するようにしてもよい。このように運転中に吸入容積を変更することとすれば、冷凍サイクル装置に対して高度な制御を行うことが可能となる。冷凍サイクル装置の運転状態に応じて最適又は好適な膨張比を選択することとすれば、運転効率の向上等を図ることができる。
【0069】
本実施形態では、膨張室32を高圧側膨張室32aと低圧側膨張室32bとに仕切る仕切部材は、仕切ベーン51によって形成されていた。しかし、仕切部材は、仕切ベーン51に限定されるものではない。ただし、本実施形態のように、仕切部材として仕切ベーン51を用い、仕切ベーン51と閉じ込みベーン61とを同一の構成にすることにより、部品の共通化を図ることができる。言い換えると、閉じ込みベーン61として、従来から用いられている仕切ベーンをそのまま流用することができる。
【0070】
また、本実施形態では、閉じ込みベーン61が磁性体で構成され、ソレノイド64と閉じ込みベーン61との間に生じる電磁力によって閉じ込みベーン61を保持していた。しかし、図5に示すように、閉じ込みベーン61に永久磁石65を取り付けるようにしてもよい。この場合、閉じ込みベーン61を非磁性体で形成することができ、閉じ込みベーン61の材料として様々な材料を選択することが可能となる。
【0071】
また、図6に示すように、磁界発生装置を永久磁石66で構成し、閉じ込みベーン61に電磁石67を設けるようにしてもよい。このようなものであっても、電磁力を利用して閉じ込みベーン61を保持することができる。
【0072】
(第2の実施形態)
図7及び図8に示すように、第2の実施形態は、第1の実施形態において、閉じ込みベーン61の位置を変更したものである。
【0073】
本実施形態では、閉じ込みベーン61と仕切ベーン51とは、同一のベーン溝53に挿入されている。言い換えると、閉じ込みベーン61用のベーン溝は、仕切ベーン51のベーン溝53と一体化されている。閉じ込みベーン61と仕切ベーン51とは、互いに平行に配置されている。
【0074】
閉じ込みベーン61は、仕切ベーン51よりも膨張室32aの下流側(図7の左側)に設けられている。図8に示すように、閉じ込みベーン61は、回転軸15の軸方向から見て、吸入口41aと重なる位置に配置されている。言い換えると、閉じ込みベーン61は、当該閉じ込みベーン61自身によって吸入口41aを覆うような位置に配置されている。したがって、閉じ込みベーン61がベーン溝53から突出すると、吸入口41aは閉じ込みベーン61によって直接的に閉鎖される。なお、閉じ込みベーン61は、軸方向から見ると吸入口41aと重なる位置に配置されているが、冷媒の流路方向に関しては、吸入口41aよりも下流側に配置されている。
【0075】
その他の構成は、第1の実施形態とほぼ同様である。
【0076】
本実施形態では、閉じ込みベーン61によって吸入口41aを閉鎖することとしたので、高圧側膨張室32aにおける吸入口41aと閉じ込みベーン61との間の空間を省略することができる。すなわち、高圧側膨張室32a内において、冷媒の膨張に寄与しない無駄な空間をなくすことができる。そのため、閉じ込みベーン61によって区画される高圧側膨張室32aの容積の最大値を大きく確保することができる。したがって、吸入容積の制御範囲を拡大させることができる。
【0077】
特に、本実施形態では、閉じ込みベーン61と仕切ベーン51とが同一のベーン溝53内に隣り合って配置されているので、高圧側膨張室32aにおける閉じ込みベーン61と仕切ベーン51との間の空間を、実質的に零にすることができる。したがって、冷媒の膨張に寄与しない無駄な空間を実質的に零にすることができる。
【0078】
(第3の実施形態)
図9に示すように、第3の実施形態はベーン保持装置に変更を加えたものである。
【0079】
本実施形態では、シリンダ30には、ベーン溝63と密閉容器11内とを連通する連通孔71が形成されている。この連通孔71には、摺動ピン72が挿入されている。摺動ピン72の一端側には可動鉄心73が取り付けられ、可動鉄心73の周囲にはソレノイド75のコイル74が巻かれている。また、可動鉄心73の摺動ピン72側には、固定鉄心76が配置されている。可動鉄心73又は摺動ピン72は、ばね等の付勢手段(図示せず)によって、閉じ込みベーン61側と反対の側(図9(a)の左側)に常時付勢されている。閉じ込みベーン61の側面には、孔77が形成されている。なお、図9では、閉じ込みベーン61を付勢するばね62(図3参照)の図示は省略している。
【0080】
図9(b)に示すように、ソレノイド75のコイル74に電流を流すと、可動鉄心73は固定鉄心76に吸引される。これにより、摺動ピン72が閉じ込みベーン61の孔77に挿入される。このように摺動ピン72が孔77に挿入されると、閉じ込みベーン61の動きが規制され、閉じ込みベーン61はベーン溝63内に没入した状態に保持される。
【0081】
一方、図9(a)に示すように、ソレノイド75のコイル74の通電を停止すると、図示しないばね等により、摺動ピン72は閉じ込みベーン61側と反対の側に付勢され、摺動ピン72は孔77から外れる。その結果、閉じ込みベーン61はベーン溝63内でスライド自在となり、閉じ込みベーン61の保持状態は解除される。
【0082】
したがって、本実施形態においても、前述の効果を得ることができる。
【0083】
なお、本実施形態では、摺動ピン72を駆動するアクチュエータは、電磁力を利用するものであった。しかしながら、上記アクチュエータは電磁力を利用するものに限定されるわけではない。例えば、上記アクチュエータとして、モータ、電動式シリンダ等を用いることも可能である。また、流体の差圧を利用して摺動ピン72を駆動するアクチュエータでもよい。このようなアクチュエータとして、流体圧シリンダ等を用いることができる。例えば、膨張前の高圧の冷媒と膨張後の低圧の冷媒とを用い、これらの冷媒の差圧を利用して、摺動ピン72を駆動することも可能である。
【0084】
本実施形態では、閉じ込みベーン61の孔77が係合部を形成し、当該係合部と係合する係合部材は摺動ピン72によって形成されていた。しかし、閉じ込みベーン61の係合部及び係合部材は、閉じ込みベーン61の突出を阻止するようなものであればよく、上記孔77及び摺動ピン72に限られないことは勿論である。
【0085】
(第4の実施形態)
次に、本発明に係る流体機械の実施形態について説明する。図10に示すように、本実施形態に係る流体機械110は、膨張機と圧縮機とが一体化されてなる流体機械110である。
【0086】
流体機械110は、密閉容器11と、密閉容器11内に収容された膨張機構20、電動機120、及び圧縮機構80とを備えている。膨張機構20、電動機120、圧縮機構80は、上から下に向かって順に配置されている。
【0087】
圧縮機構80は、ロータリ式の圧縮機構である。ただし、圧縮機構80はロータリ式に限られず、例えばスクロール式の圧縮機構等、他の回転式圧縮機構であってもよい。
【0088】
圧縮機構80は、略円筒状のシリンダ81と、シリンダ81の上端を覆う上側閉塞部材82と、シリンダ81の下端を覆う下側閉塞部材83と、シリンダ81内に回転自在に配置された円筒状のピストン84とを備えている。
【0089】
シリンダ81の内部には、シリンダ81の内周面とピストン84の外周面とによって圧縮室87が区画されている。シリンダ81には径方向に延びるベーン溝93が形成され、このベーン溝93内に、ピストン84に当接するベーン89と、ベーン89をピストン84に向かって付勢するばね90とが設けられている。ピストン84の内部には、回転軸85の偏心部85aが摺動自在に挿入されている。回転軸85が回転すると、ピストン84は偏心部85aによって回転駆動され、シリンダ81の内周面と接触しながらシリンダ81内を回転移動する。これにより、圧縮室87の容積が変化し、圧縮室87内で冷媒が圧縮される。
【0090】
密閉容器11の側壁の下側には、低圧冷媒を吸入する吸入管91が接続されている。吸入管91は上側閉塞部材82に挿入されており、上側閉塞部材82の内部には、吸入管91から圧縮室87に冷媒を導く吸入路86が形成されている。上側閉塞部材82には、圧縮室87と密閉容器11の内部空間とを連通する吐出流路88が形成されている。密閉容器11の側壁の上下方向中央部には、吐出管92が接続されている。吐出管92は、密閉容器11の内部空間に開口している。このような構成により、吸入管91内の低圧の冷媒は、吸入路86を通じて圧縮室87に吸入され、圧縮室87内で圧縮された後、吐出流路88を通じて密閉容器11の内部空間に放出される。そして、密閉容器11内の高圧の冷媒は、吐出管92から吐出される。
【0091】
電動機120は固定子121と回転子122とからなり、回転子122には回転軸85が固定されている。回転軸85は、膨張機構20の回転軸15と同軸状に連結されている。そのため、回転軸15と回転軸85とは、一体となって回転する。なお、本実施形態では、膨張機構20の回転軸15と圧縮機構80の回転軸85とを別部材で形成しているが、これら回転軸15及び回転軸85を同一部材で一体的に形成してもよい。
【0092】
膨張機構20の構成は、第1の実施形態とほぼ同様である。膨張機構20の説明は省略する。なお、密閉容器11の内部は、膨張機構20の第2の閉塞部材22によって区画されている。すなわち、第2の閉塞部材22の上側には、膨張側の高圧空間が形成され、第2の閉塞部材22の下側には、圧縮側の高圧空間が形成されている。ただし、密閉容器11内に第2の閉塞部材22と別個の区画部材を設けてもよいことは勿論である。
【0093】
本実施形態においても、第1の実施形態と同様の効果を得ることができる。すなわち、膨張機構20の吸入容積を自由に設定することができる。また、吸入容積を変更することができ、膨張比を制御することができる。
【0094】
本流体機械110では、膨張機構20の回転軸15は、圧縮機構80の回転軸85と一体となって回転する。そのため、膨張機構20の回転数と圧縮機構80の回転数とは常に等しくなり、膨張機構20の回転数を圧縮機構80の回転数と別個独立に制御することはできない。しかしながら上述したように、本流体機械110では、閉じ込みベーン61の保持を解除する時期を調整することにより、膨張機構20の吸入容積を制御することができる。したがって、圧縮機構80の回転数に拘わらず、膨張機構20の膨張比を自由に制御することができる。
【0095】
なお、本実施形態では、膨張機構20が圧縮機構80の上方に配置されていたが、膨張機構20は圧縮機構80の下方に配置されていてもよい。すなわち、密閉容器11の上側に圧縮機構80を配置し、下側に膨張機構20を配置するようにしてもよい。
【0096】
また、本実施形態では、回転軸15及び回転軸85は上下方向に延び、膨張機構20、電動機120及び圧縮機構80は、上下方向に並んでいた。しかしながら、密閉容器11を横置き型に形成してもよい。すなわち、回転軸15及び回転軸85を左右方向に配置し、膨張機構20、電動機120及び圧縮機構80を左右方向に並べてもよい。
【0097】
(その他の実施形態)
前記実施形態では、膨張機構20には、シリンダは一つだけ設けられていた。しかし、膨張機構20は、複数のシリンダを備えたものであってもよい。
【0098】
前記実施形態では、閉じ込みベーン61は、回転するピストン31によってベーン溝63に押し込まれていた。しかし、閉じ込みベーン61を電磁力によってベーン溝63内に引っ張り込むことも可能である。
【0099】
また、前記実施形態では、閉じ込みベーン61を付勢する付勢装置は、ばね62によって形成されていた、しかし、上記付勢装置は、ばね62以外の弾性体であってもよい。また、上記付勢装置は、弾性体に限らず、例えば静電気力又は磁力等によって付勢力を発生させるものであってもよい。
【産業上の利用可能性】
【0100】
以上説明したように、本発明は、ロータリ式膨張機、及びロータリ式膨張機を有する流体機械について有用である。
【図面の簡単な説明】
【0101】
【図1】冷凍サイクル装置の冷媒回路図
【図2】第1の実施形態に係る膨張機の縦断面図
【図3】閉じ込みベーンが没入した状態の膨張機構の横断面図(図2のIII−III線断面図)
【図4】閉じ込みベーンが突出した状態の膨張機構の横断面図
【図5】ベーン保持装置の変形例の構成図
【図6】ベーン保持装置の他の変形例の構成図
【図7】第2の実施形態に係る膨張機の横断面図であって、閉じ込みベーンが没入した状態の図
【図8】第2の実施形態に係る膨張機の横断面図であって、閉じ込みベーンが突出した状態の図
【図9】(a)及び(b)は、第3の実施形態に係るベーン保持装置の構成図
【図10】第4の実施形態に係る流体機械の縦断面図
【符号の説明】
【0102】
30 シリンダ
31 ピストン
32 膨張室
41a 吸入口
44a 吐出口
51 仕切ベーン(仕切部材)
61 閉じ込みベーン
62 ばね(付勢装置)
63 ベーン溝
64 ソレノイド(ベーン保持装置,磁界発生装置)




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013