米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 機械工学 -> トヨタ自動車株式会社

発明の名称 内燃機関の制御装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−9779(P2007−9779A)
公開日 平成19年1月18日(2007.1.18)
出願番号 特願2005−190207(P2005−190207)
出願日 平成17年6月29日(2005.6.29)
代理人 【識別番号】100106150
【弁理士】
【氏名又は名称】高橋 英樹
発明者 ▲吉▼岡 衛
要約 課題
本発明は内燃機関の制御装置に関し、減速フューエルカット時、触媒の劣化を抑制しつつオイル消費量も抑制し、且つ、減速感も確保できるようにする。

解決手段
減速時にフューエルカット条件が成立したら、吸入空気量を減少させる側に吸入空気量調整手段を作動させるとともに、フューエルカット手段を作動させて複数の気筒についてフューエルカットを実施する。また、排気ガス再循環量を増大させる側に再循環量調整手段を作動させるとともに、気筒休止手段を作動させて複数の気筒のうち少なくとも1つの気筒を休止させる。そして、排気ガス再循環量が所望量まで増量されたら気筒休止手段による気筒休止を解除する。
特許請求の範囲
【請求項1】
複数の気筒を有する内燃機関の制御装置であって、
前記複数の気筒についてフューエルカットを実施するフューエルカット手段と、
吸入空気量を調整する吸入空気量調整手段と、
排気ガスの再循環量を調整する再循環量調整手段と、
前記複数の気筒のうち少なくとも1つの気筒について吸気バルブ及び排気バルブの少なくとも一方を閉状態とすることで当該気筒を休止させる気筒休止手段と、
前記内燃機関の減速時にフューエルカット条件の成立を判定するフューエルカット判定手段と、
前記フューエルカット条件が成立したときに、吸入空気量を減少させる側に前記吸入空気量調整手段を作動させる第1の制御と、前記フューエルカット手段を作動させて前記複数の気筒についてフューエルカットを実施する第2の制御と、排気ガス再循環量を増大させる側に前記再循環量調整手段を作動させる第3の制御と、前記気筒休止手段を作動させて前記複数の気筒のうち少なくとも1つの気筒を休止させ、排気ガス再循環量が所望量まで増量されたら前記気筒休止手段による気筒休止を解除する第4の制御と、を実行する制御手段と、
を備えることを特徴とする内燃機関の制御装置。
【請求項2】
前記再循環量調整手段は、吸気バルブと排気バルブのオーバーラップ期間を変化させるバルブタイミング可変機構であることを特徴とする請求項1記載の内燃機関の制御装置。
【請求項3】
前記再循環量調整手段は、排気通路と吸気通路とを接続するEGR通路に配置されたEGRバルブであることを特徴とする請求項1記載の内燃機関の制御装置。
【請求項4】
フューエルカットからの復帰条件の成立を判定するフューエルカット復帰判定手段をさらに備え、
前記制御手段は、前記フューエルカット復帰条件が成立したときに、前記気筒休止手段を作動させて前記複数の気筒のうち少なくとも1つの気筒を休止させる第5の制御と、前記複数の気筒のうち休止気筒以外の気筒について前記フューエルカット手段によるフューエルカットを解除する第6の制御と、排気ガス再循環量を減少させる側に前記再循環量調整手段を作動させる第7の制御と、排気ガス再循環量が所望量まで減量されたら前記気筒休止手段による気筒休止を解除するとともに前記複数の気筒のうち休止されていた気筒について前記フューエルカット手段によるフューエルカットを解除する第8の制御と、を実行する
ことを特徴とする請求項1乃至3の何れか1項に記載の内燃機関の制御装置。
【請求項5】
フューエルカットからの復帰時に前記内燃機関に要求される負荷が高負荷か低負荷かを判定する手段をさらに備え、
前記制御手段は、前記内燃機関への要求負荷が低負荷である場合には、前記の第5乃至第8の制御を実行し、前記内燃機関への要求負荷が高負荷である場合には、前記複数の気筒について前記フューエルカット手段によるフューエルカットを解除する第9の制御を実行する
ことを特徴とする請求項4記載の内燃機関の制御装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は複数の気筒を有する内燃機関の制御装置に関し、詳しくは、減速時にフューエルカットを実施する内燃機関の制御装置に関する。
【背景技術】
【0002】
従来、例えば特許文献1には、内燃機関の減速時における触媒の劣化抑制と、エンジンブレーキによる減速感の確保とを両立するように、気筒休止時における吸気バルブ及び排気バルブの作動状態を制御する技術が開示されている。
【0003】
内燃機関においては、運転者によって減速が要求された場合に、一般に、燃費特性の改善のためフューエルカット(以下、減速フューエルカットという)が実行される。このため、内燃機関の減速時には、吸気通路から排気通路にかけて燃料を含まないリーンな空気が流通する事態が生ずる。
【0004】
内燃機関の排気通路に配置される触媒は、高温環境化でリーンなガスの供給を受けることにより劣化し易いという特性を有している。このため、フューエルカット中における触媒の劣化を抑制するうえでは、内燃機関の減速時における流通空気量を少量とすることが望まれる。そこで、内燃機関の減速時には、スロットルを閉側に制御する(例えばアイドル開度にする)ことによって流通空気量の減少が図られている。
【0005】
しかし、スロットルが閉じられると吸気管内部は大きく負圧化する。吸気管内部に大きな負圧が生ずると、その影響により、内燃機関の筒内圧力も負圧化され易い。そして、筒内圧力が負圧化されると、所謂オイル上がりにより、内燃機関におけるオイル消費量が増大する。このため、オイル消費量を抑える観点より、内燃機関の減速時における吸気管圧力は、過度に負圧化させないことが望ましい。
【0006】
吸気管負圧の増大を抑制する手段としては、複数ある気筒のうち一部の気筒において吸気バルブ及び排気バルブの少なくとも一方を閉じることで、当該気筒を休止させる気筒休止技術が知られている。気筒休止によれば、休止された気筒分だけサージタンク内の空気密度が増加するので、吸気管圧力の過度な負圧化を抑制することができる。
【0007】
しかし、気筒休止を行うと、休止された気筒では空気の流れがなくなるためにフリクションが低下する。その結果、エンジンブレーキが不足して減速感が得られなくなってしまう可能性がある。
【0008】
上述した従来のシステムは、気筒休止時における吸気バルブ及び排気バルブの作動状態を制御することで、具体的には、吸気バルブ及び排気バルブの何れか一方は休止させずに作動させることにより、作動する方の弁の開閉によりポンピングロスを生じさせ、エンジンブレーキ効果を発生させようとするものである。
【特許文献1】特開2004−143990号公報
【特許文献2】特開2001−182570号公報
【特許文献3】特開2004−137969号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
上記従来のシステムによれば、内燃機関の減速時には、一部の気筒が休止されることでサージタンク内の空気密度が増加し、吸気管圧力の過度な負圧化は抑制される。しかしながら、上記従来のシステムは、内燃機関の減速時における触媒の劣化抑制と、エンジンブレーキによる減速感の確保と、オイル消費量の抑制とを、気筒休止時における吸気バルブ及び排気バルブの作動状態の制御のみにより、つまり、単一のアクチュエータの制御のみにより達成しようとするものである。この点、上記従来のシステムは、触媒の劣化抑制、減速感の確保、オイル消費量の抑制の何れの面においても、未だ改良の余地を残すものであった。
【0010】
本発明は、上述のような課題を解決するためになされたもので、減速フューエルカット時、触媒の劣化を抑制しつつオイル消費量も抑制し、且つ、減速感も確保できるようにした、内燃機関の制御装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
第1の発明は、上記の目的を達成するため、複数の気筒を有する内燃機関の制御装置であって、
前記複数の気筒についてフューエルカットを実施するフューエルカット手段と、
吸入空気量を調整する吸入空気量調整手段と、
排気ガスの再循環量を調整する再循環量調整手段と、
前記複数の気筒のうち少なくとも1つの気筒について吸気バルブ及び排気バルブの少なくとも一方を閉状態とすることで当該気筒を休止させる気筒休止手段と、
前記内燃機関の減速時にフューエルカット条件の成立を判定するフューエルカット判定手段と、
前記フューエルカット条件が成立したときに、吸入空気量を減少させる側に前記吸入空気量調整手段を作動させる第1の制御と、前記フューエルカット手段を作動させて前記複数の気筒についてフューエルカットを実施する第2の制御と、排気ガス再循環量を増大させる側に前記再循環量調整手段を作動させる第3の制御と、前記気筒休止手段を作動させて前記複数の気筒のうち少なくとも1つの気筒を休止させ、排気ガス再循環量が所望量まで増量されたら前記気筒休止手段による気筒休止を解除する第4の制御と、を実行する制御手段と、
を備えることを特徴としている。
【0012】
第2の発明は、第1の発明において、
前記再循環量調整手段は、吸気バルブと排気バルブのオーバーラップ期間を変化させるバルブタイミング可変機構であることを特徴としている。
【0013】
第3の発明は、第1の発明において、
前記再循環量調整手段は、排気通路と吸気通路とを接続するEGR通路に配置されたEGRバルブであることを特徴としている。
【0014】
第4の発明は、第1乃至第3の何れか1つの発明において、
フューエルカットからの復帰条件の成立を判定するフューエルカット復帰判定手段をさらに備え、
前記制御手段は、前記フューエルカット復帰条件が成立したときに、前記気筒休止手段を作動させて前記複数の気筒のうち少なくとも1つの気筒を休止させる第5の制御と、前記複数の気筒のうち休止気筒以外の気筒について前記フューエルカット手段によるフューエルカットを解除する第6の制御と、排気ガス再循環量を減少させる側に前記再循環量調整手段を作動させる第7の制御と、排気ガス再循環量が所望量まで減量されたら前記気筒休止手段による気筒休止を解除するとともに前記複数の気筒のうち休止されていた気筒について前記フューエルカット手段によるフューエルカットを解除する第8の制御と、を実行する
ことを特徴としている。
【0015】
第5の発明は、第4の発明において、
フューエルカットからの復帰時に前記内燃機関に要求される負荷が高負荷か低負荷かを判定する手段をさらに備え、
前記制御手段は、前記内燃機関への要求負荷が低負荷である場合には、前記の第5乃至第8の制御を実行し、前記内燃機関への要求負荷が高負荷である場合には、前記複数の気筒について前記フューエルカット手段によるフューエルカットを解除する第9の制御を実行する
ことを特徴としている。
【発明の効果】
【0016】
第1の発明によれば、減速フューエルカット時には、吸入空気量調整手段の作動によって吸入空気量が低減され、それにより触媒の劣化が抑制される。その際、複数の気筒のうち少なくとも1つの気筒は、吸気バルブ及び排気バルブの少なくとも一方を閉状態として休止するので、当該気筒による空気の消費がなくなり、吸気圧が低下する。その分、吸入空気量調整手段の作動によって吸入空気量を低減しても吸気管負圧の増大は抑制され、燃焼室内の負圧が増大することによる燃焼室内へのオイル上がりが防止される。その後、再循環量調整手段の作動によって排気ガスの再循環量が所望量まで増量されたら、気筒休止は解除され、以降は排気ガス再循環量の増量によって吸気管負圧の増大が抑制される。気筒休止が解除されることで内燃機関のポンピングロスが増大し、より高い減速性が得られるようになる。
【0017】
特に、第2の発明によれば、バルブタイミング可変機構により吸気バルブと排気バルブのオーバーラップ期間を増大させ、排気通路から吸気通路への排気ガスの吹き戻し量(内部EGR量)を増大させることによって吸気管負圧の増大を抑制することができる。また、第3の発明によれば、EGRバルブを開き側に調整し、EGR通路を通って排気通路から吸気通路へ供給される排気ガスの流量(外部EGR量)を増大させることによって吸気管負圧の増大を抑制することができる。
【0018】
第4の発明によれば、減速フューエルカットからの復帰時には、複数の気筒のうち少なくとも1つの気筒を休止させ、休止気筒以外の気筒についてフューエルカットが解除された状態で、排気ガス再循環量の減量が行われる。一部の気筒を休止させることで吸気管負圧は大きく減少し、休止気筒以外の気筒では燃焼室内に吸入される新気の量が増大する。その結果、フューエルカットが解除された気筒での失火は回避される。そして、排気ガス再循環量が十分に減量された状態で、全ての気筒について気筒休止とフューエルカットが解除されることで、失火を生じさせることなくフューエルカットから完全復帰することができる。
【0019】
さらに、第5の発明によれば、フューエルカットからの復帰時に内燃機関に高負荷が要求されているときには、全ての気筒についてフューエルカットが解除されるので、要求負荷に応じたトルクを速やかに出力することが可能になる。なお、この場合は、要求負荷に応じてスロットルが大きく開かれるため、燃焼室内には十分な量の新気が吸入され、フューエルカットが解除された気筒での失火は回避される。
【発明を実施するための最良の形態】
【0020】
以下、図1及び図7を参照して、本発明の実施の形態について説明する。
図1は本発明の実施の形態としての制御装置が適用される内燃機関(以下、エンジンという)の概略構成を示す図である。図2は、図1に示すエンジンのシリンダヘッド部を上方から見た図である。図2に示すように、本実施形態にかかるエンジンは4つの気筒(#1〜#4)を備えている。なお、本実施形態では、本発明を直列4気筒エンジンに適用しているが、本発明はV型等の他の形式の多気筒エンジンにも適用可能である。
【0021】
本実施形態にかかるエンジンは、その内部にピストン8が配置されたシリンダブロック6と、シリンダブロック6に組み付けられたシリンダヘッド4を備えている。ピストン8の上面からシリンダヘッド4までの空間が各気筒の燃焼室10を形成している。シリンダヘッド4には、燃焼室10の頂部から燃焼室10内に突出するように点火プラグ16が取り付けられている。
【0022】
シリンダヘッド4には、燃焼室10に連通するように吸気ポート18と排気ポート20が形成されている。吸気ポート18には吸気マニホールド32が接続されている。吸気マニホールド32はサージタンク34を有し、サージタンク34から各気筒の吸気ポート18へ空気を分配している。吸気マニホールド32には、気筒毎に吸気ポート18を臨むようにインジェクタ40が取り付けられている。
【0023】
サージタンク34には、空気(新規ガス)が導入される空気導入管30が接続されている。空気導入管30の上流端にはエアクリーナ36が設けられ、エアクリーナ36の下流には新規ガスの吸入量に応じた信号を出力するエアフローメータ66が配置されている。また、空気導入管30とサージタンク34との接続部には電子制御式のスロットル38が配置されている。スロットル38には、その開度に応じた信号を出力するスロットルセンサ64が付設されている。
【0024】
シリンダヘッド4の排気ポート20には排気マニホールド42が接続されている。燃焼室10内で混合気が燃焼することにより生成した燃焼ガスは、排気ポート20から排気マニホールド42へ排出される。排気マニホールド42は排気ガス(燃焼ガス)を大気中へ放出するための排気ガス排出管44に接続されている。排気ガス排出管44には、排気ガスを浄化するための触媒46が設けられている。
【0025】
シリンダヘッド4における吸気ポート18と燃焼室10との接続部には、吸気ポート18と燃焼室10との連通状態を制御する吸気バルブ12が設けられている。吸気バルブ12は、吸気カムシャフト26に設けられた吸気カム26aによって駆動され、リフト運動を行う。また、排気ポート20と燃焼室10との接続部には、排気ポート20と燃焼室10との連通状態を制御する排気バルブ14が設けられている。排気バルブ14は、排気カムシャフト28に設けられた排気カム28aによって駆動され、リフト運動を行う。
【0026】
吸気カムシャフト26及び排気カムシャフト28は、何れもクランクシャフト24とベルト或いはチェーンによって連結され、クランクシャフト24の回転に同期して回転する。このうち、吸気カムシャフト26には、バルブタイミング可変機構50が設けられている。バルブタイミング可変機構50は、クランクシャフト24に対する吸気カムシャフト26の位相角を変化させることで、各気筒の吸気バルブ12のバルブタイミングを可変制御することができる。
【0027】
バルブタイミング可変機構50の構成について、具体的に説明する。バルブブタイミング可変機構50は、クランクシャフト24に同期して回転するハウジング(図示略)と、ハウジング内に配置され吸気カムシャフト26に同期して回転するロータ(図示略)を備えている。ハウジングの内部にはロータによって区画された2つの油室が設けられている。バルブタイミング可変機構50は、何れかの油室へ作動油が供給されてハウジングに対するロータの回転角が変化することにより作動する。具体的には、一方の油室へ作動油が供給されることで、バルブタイミング可変機構50はクランク軸に対するカム軸の位相角を進角側に変化させるように作動し、他方の油室へ作動油が供給されることで、バルブタイミング可変機構50はクランク軸に対するカム軸の位相角を遅角側に変化させるように作動する。ただし、以上説明した構成は、バルブタイミング可変機構50が採り得る構成の一例であり、バルブタイミングを変更可能であれば他の構成を用いてもよい。
【0028】
また、各気筒#1〜#4には、吸気カム26aと吸気バルブ12との間に介在して吸気バルブ12の開閉を制御する可変動弁装置52と、排気カム28aと排気バルブ14との間に介在して排気バルブ14の開閉を制御する可変動弁装置54とが設けられている。可変動弁装置52,54は気筒毎に独立して作動することができる。図3及び図4に、油圧回路により制御される可変動弁装置の構造を示す。図3は、可変動弁装置の斜視図であり、図4はその側部断面図である。吸気側の可変動弁装置52と排気側の可変動弁装置54とは同構成であるので、以下では、吸気側の可変動弁装置52について説明する。
【0029】
図4に示するように、吸気カム26aの下方には、ロッカシャフト100に回動可能に軸支されたロッカアーム102が設けられている。このロッカアーム102の先端側には、アーム104が前方へ突出する態様で形成されている。このアーム104の先端は、一対の吸気バルブ12の上端に当接しており、バルブスプリング(図示略)の付勢力によってそれら吸気バルブ12が閉弁される側に押圧されている。そして、ロッカシャフト100を軸としたロッカアーム102の回動にともないアーム122が揺動することで、吸気バルブ12はアーム122に押圧されてリフト運動するようになっている。
【0030】
ロッカアーム102の上面には、吸気カム26aに当接する可動カムフォロワ106が設けられている。可動カムフォロワ106は、ロッカアーム102の上下方向に沿って形成された摺動孔120内に摺動可能に配置されている。また、可動カムフォロワ106は、コイルばね(図示略)の付勢力によって吸気カム26aに向けて常時付勢されている。可動カムフォロワ106は、吸気カム26aとすべり接触をしつつ吸気カム26aから押圧を受けている。
【0031】
ロッカアーム102の下方には、可動カムフォロワ106が嵌入された摺動孔120と交差するシリンダ穴122が形成されている。シリンダ穴122内には、ロッカアーム102と可動カムフォロワ106とを選択的に締結若しくは締結解除するロックピン112が摺動可能に配置されている。
【0032】
次に、ロックピン112を中心として構成されるカム切り換え機構について、図5A及び図5Bを用いて詳細に説明する。なお、図5A及び図5Bはロックピン112付近の側部断面構造を示す断面図であり、図5Aは締結解除時の態様を、図5Bは締結時の態様をそれぞれ示している。
【0033】
ロックピン112は、摺動孔120と交差するシリンダ穴122内に摺動可能に配置されている。ロックピン112は、コイルばね116によってロッカアーム102の基端側、すなわち可動カムフォロワ106から離間する方向に向けて常時付勢されている。
【0034】
ロックピン112には、その中央部から先端側にかけて溝114が形成されている。この溝114には、可動カムフォロワ106の下端部が嵌入可能となっている。さらに、溝114の先端側は、可動カムフォロワ106の上下方向の摺動を許容すべく底面が切り欠かれている。一方、溝114の中央部側(基端側)は、可動カムフォロワ106の下端と当接可能なようにその底面が残されている。
【0035】
シリンダ穴122にあってロックピン112によって区画されたロッカアーム102の基端側の空間118は、ロックピン112を動作させるための作動油が導入される油圧室となっている。この油圧室118は、ロッカアーム102内に形成された油通路126と接続されている。さらにこの油通路126は、ロッカシャフト100内に形成された油通路124と接続されており、これら油通路124,126を通じて行われる作動油の供給及び排出によって、油圧室118内の油圧が調整される。そしてロックピン112は、この油圧室118内の油圧に基づく力と、コイルばね116の付勢力との釣り合いに応じてシリンダ穴122内を移動し、図5Aに示す位置と図5Bに示す位置との間を往復摺動するようになっている。
【0036】
ロッカアーム102と可動カムフォロワ106との締結を解除する場合は、油圧室118内から作動油を排出して油圧室118内の油圧を低下させる。その結果、ロックピン112は、コイルばね116の付勢力によってロッカアーム102の基端側に向けて移動し、図5Aに示す位置に位置するようになる。このとき、可動カムフォロワ106の下端部は、ロックピン112の溝114の底面が切り欠かれた部分に位置しているため、その上下方向の摺動が許容される。
【0037】
このときの吸気カム26aの押圧は、可動カムフォロワ106の摺動孔120内での上下方向の摺動によって吸収され、ロッカアーム102には伝達されない。このため、ロッカアーム102は吸気カム26aによって回動されることなく静止状態となり、吸気バルブ12も閉弁状態で停止したままとなる。
【0038】
一方、ロッカアーム102と可動カムフォロワ106とを締結する場合は、油圧室118に作動油を供給して油圧室118内の油圧を上昇させる。その結果、ロックピン112は、コイルばね116の付勢力に抗してロッカアーム102の先端側に移動し、図5Bに示す位置に位置するようになる。このとき、可動カムフォロワ106の下端部は、ロックピン112の溝114の底面が残された部分に位置するようになる。このとき、可動カムフォロワ106が押し下げられると、その下端面と溝114の底面とが当接する。
【0039】
このときの吸気カム26aの押圧は、可動カムフォロワ106及びロックピン112の当接を通じてロッカアーム102にも直接的に伝達されるようになる。すなわち、このときの可動カムフォロワ106とロッカアーム102とは連結された状態となり、一体となって回動するようになる。そして、この場合には、ロッカアーム102は吸気カム26aによって回動されるようになり、吸気バルブ12も吸気カム26aによって開閉駆動されるようになる。
【0040】
以上のように、可変動弁装置52は、その油圧回路内に設けられた電磁弁などを制御して油圧室118への作動油の供給を制御することにより、吸気バルブ12の作動及び停止を制御することができるようになっている。このことは排気側の可変動弁装置54についても同様であり、可変動弁装置54は、排気バルブ14の作動及び停止を制御することができる。なお、以上説明した可変動弁装置52,54の機構は、吸気バルブ12や排気バルブ14を閉状態で停止させるための手段の一例であり、他の機構を用いて吸気バルブ12や排気バルブ14を停止させるようにしてもよい。
【0041】
エンジンは、その制御装置としてECU(Electronic Control Unit)60を備えている。ECU50の出力側には前述の点火プラグ16、スロットル38、インジェクタ40、バルブタイミング可変機構50、可変動弁装置52,54等の種々の機器が接続されている。ECU60の入力側には、前述のスロットルセンサ64やエアフローメータ66の他、クランクシャフト62の回転角度に応じた信号を出力するクランク角センサ62や、冷却水温に応じた信号を出力する水温センサ68等の種々のセンサ類が接続されている。ECU50は、各センサの出力に基づき、所定の制御プログラムにしたがって各機器を駆動するようになっている。
【0042】
図6は、本実施形態においてECU60により実行される減速フューエルカット時及び減速フューエルカットからの復帰時の制御のルーチンをフローチャートで示したものである。図6に示すルーチンは、一定のクランク角毎に周期的に実行される。本ルーチンの最初のステップ100では、エンジンの運転状態に関する情報が取り込まれる。具体的には、クランク角センサ62の信号からエンジン回転数neが取得され、エアフローメータ66の信号から負荷率klが取得される。また、スロットルセンサ64の信号からスロットル開度taが取得され、水温センサ68の信号からエンジン水温thwが取得される。
【0043】
ステップ102では、減速フューエルカット(減速F/C)の実行条件が成立しているか否か判定される。より具体的には、スロットル開度taが所定のアイドル開度ta0以下まで閉じられているかが判定される。本実施形態のシステムでは、減速フューエルカットの実行時には、スロットル38はアイドル開度ta0よりもさらに小さい開度(略全閉に近い開度)まで閉じられる。スロットル38が全閉に近い状態まで閉じられることで、吸入空気量は大きく減少し、高温状態の触媒46に燃料を含まないリーンな空気が多量に流れることは防止される。
【0044】
ステップ102の判定の結果、スロットル開度taがアイドル開度ta0以下の場合、つまり、減速F/C条件の成立が認められた場合には、減速フューエルカットのためのエンジン制御が実施される。一方、スロットル開度taがアイドル開度ta0よりも大きい場合、つまり、減速F/C条件の不成立が認められた場合には、通常の運転の継続、或いは、減速フューエルカットからの復帰のためのエンジン制御が実施される。
【0045】
以下では、まず、ステップ102の判定で減速F/C条件の成立が認められた場合について説明する。減速F/C条件の成立が認められた場合、先ず、ステップ104の処理が実行される。ステップ104では、全気筒についてインジェクタ40からの燃料噴射が停止される。つまり、減速フューエルカットが実行される。また、燃料噴射の停止と並行して、吸気バルブ12のバルブタイミングVVTが減速F/C時目標値vt2になるように、バルブタイミング可変機構50が制御される。
【0046】
減速F/C時目標値vt2は、減速フューエルカットの実行中に実現するべきバルブタイミングVVTの値(進角量)である。減速F/C時目標値vt2は、機関回転数neとの関係で定められている。より具体的には、減速時目標値vt2は、アイドル回転数付近で0となり、機関回転数neが高くなるほど大きな値となるように定められている。減速F/C時目標値vt2は、負荷率klが十分に小さい状況下で用いられる目標値である。バルブタイミングVVTの通常目標値は、このような状況下では全回転領域において0とされる。従って、減速F/C時目標値vt2は、通常目標値に比して、機関回転数neが高くなるに連れて大きな値になるように設定されている。
【0047】
本実施形態のシステムは、バルブタイミングVVTが大きな値になるほど、吸気バルブ12と排気バルブ14のバルブオーバーラップ期間が長くなるように構成されている。バルブオーバーラップ期間が長いほど、排気ポート20から吸気ポート18への排気ガスの吹き戻し量、すなわち、内部EGR量は多量となる。内部EGR量を増大させることで、次のような効果が得られる。
【0048】
減速時にはスロットル38が閉じられることで、スロットル38の下流である吸気マニホールド32及び吸気ポート18の内部(以下、吸気管内部という)は大きく負圧化する。吸気管内部に大きな負圧が生ずると、その影響によって燃焼室10内の圧力(筒内圧力)も負圧化し、所謂オイル上がりが生じてしまう。このため、オイル消費量を抑える観点からは、減速時における吸気管圧力(吸気マニホールド32及び吸気ポート18内の圧力)は過度に負圧化させないことが望ましい。吸気管圧力の負圧化を抑制する手段としては、排気ガスの再循環量を増大させることが有効である。したがって、上記のように減速フューエルカットの実行と並行してバルブタイミングVVTを制御し、内部EGR量を増大させれば、スロットル38の閉弁に伴う吸気管負圧の増大を抑制し、オイル上がりを抑制することができる。
【0049】
しかしながら、バルブタイミング可変機構50の機構上、バルブタイミング可変機構50に対してバルブタイミングVVTを減速F/C時目標値vt2に一致させるための指令が発せられた後、現実にVVTがvt2に一致するまでには、ある程度のアクチュエータ作動時間が必要である。つまり、本実施形態のシステムでは、減速F/C時目標値vt2が定められた後、過度の吸気負圧の発生を回避するに足る内部EGR量が確保されるまでには、ある程度の時間(エンジン回転で数サイクル)を要する。このため、スロットル38が閉じられてから内部EGR量が増大するまでにはタイムラグが生じ、そのタイムラグの間は吸気管負圧の増大を効果的に抑制することができない。
【0050】
そこで、本ルーチンでは、内部EGR量が十分に増大するまでの間、吸気管負圧の増大を抑制するための手段として、バルブタイミングVVTの制御と並行してステップ106乃至ステップ114による制御が実施される。
【0051】
まず、ステップ106では、フラグXVVTaが0か否か判定される。このフラグXVVTaは、後に実行されるステップ110の判定処理で実バルブタイミングvttが基準値Aよりも大きくなるまでは0に保持される。ステップ110の判定で用いられるvtt>Aなる条件は、所望の内部EGR量が確保される程度に実バルブタイミングvttが変化したかを判断するための条件である。ステップ110の判定でvttがAを超えたとき、次のステップ112で、フラグXVVTaは1にセットされる。
【0052】
フラグXVVTaが0の間、つまり、実バルブタイミングvttが所望の内部EGR量が確保される程度に達していない間は、ステップ108の処理が実行される。ステップ108では、4つの気筒#1〜#4のうち何れか1つの気筒(例えば、第1気筒#1)のみ、その運転が休止される(1気筒減筒運転)。運転の休止は、第1気筒#1の吸気バルブ12及び排気バルブ14をともに閉弁状態で停止させることで実現される。前述のように、可変動弁装置52,54は気筒毎に設けられているので、吸気バルブ12及び排気バルブ14は、気筒毎にその作動及び停止を制御することができる。
【0053】
バルブタイミングVVTの変更が数サイクルを要するのに対し、可変動弁装置52,54によるバルブ12,14の作動から停止への切替えは、遅くとも1サイクル以内で完了する。そして、両バルブ12,14を閉弁状態で停止させることで、第1気筒#1での空気の消費がなくなり、その分、サージタンク34内の空気密度は増加し、吸気管負圧が低下する。したがって、減速フューエルカットの実行と同時に可変動弁装置52,54を作動させ、第1気筒#1の運転を休止させることで、スロットル38の閉弁直後から吸気管負圧の増大を抑制することが可能になる。
【0054】
次のステップ110では、前述のように実バルブタイミングvttが基準値Aよりも大きくなったか否か判定される。実バルブタイミングvttが基準値Aよりも大きくなるまでは、フラグXVVTaは0に保持される。その間、ステップ106の判定結果はYesとなり、第1気筒#1の運転休止による1気筒減筒運転(ステップ108)が継続される。
【0055】
バルブタイミングVVTの進角が進むことで、やがて、実バルブタイミングvttは基準値Aよりも大きくなる。実バルブタイミングvttが基準値Aを超えたときには、吸気管負圧の増大を効果的に抑制できる程度の内部EGR量が確保されている。したがって、この段階では、1気筒減筒運転を行わずとも、バルブタイミングVVTの制御のみによって吸気管負圧の増大を抑制し、オイル上がりを防止することが可能になっている。
【0056】
また、1気筒減筒運転時には、第1気筒#1の空気の出入りが無い分、気筒休止を行わない場合に比較してエンジンのポンピングロスは減少している。減速フューエルカット時のエンジンの減速性はポンピングロスの大小によって左右されるので、ドライバが満足いく減速感を得られるようにするためには、早期に1気筒減筒運転を中止して、エンジンのポンピングロスを増大させるようにしたい。
【0057】
そこで、ステップ110の判定でvtt>Aなる条件が成立し、ステップ112でフラグXVVTaが1にセットされた場合には、ステップ106からステップ114へ進み、1気筒減筒運転が中止される。つまり、第1気筒#1の可変動弁装置52,54の作動により、第1気筒#1の吸気バルブ12及び排気バルブ14は、ともに停止から作動へ切替えられる。この切替えは、作動から停止への切替えと同様、遅くとも1サイクル以内で完了する。第1気筒#1の運転休止が解除されることで、エンジンのポンピングロスが増大し、より高い減速性が得られるようになる。
【0058】
なお、減速フューエルカットの実行中は、ステップ116の処理が実行される。ステップ116では、フラグXFCが1にセットされ、フラグXVVTbが0にリセットされる。フラグXFC、フラグXVVTbの意味については後述する。
【0059】
以上説明した減速フューエルカット時の動作、つまり、ステップ102で減速F/C条件の成立が認められた場合の動作をタイムチャートで表したものが図7である。図7では、上段から順に(A)バルブタイミングVVTの進角量、(B)気筒減筒数、(C)スロットル開度の各動作を示している。そして、最下段に、制御結果としての(D)吸気管負圧の時間変化を示している。
【0060】
図7において、太い実線が本ルーチンの実行による動作及び制御結果を示している。一方、破線は比較例としての第1比較制御方法による動作及び制御結果を示し、細い実線は第2比較制御方法による動作及び制御結果を示している。第1比較制御方法及び第2比較制御方法では、本ルーチンのようにバルブタイミングVVTの進角や気筒減筒運転は実行しない。第1比較制御方法と第2比較制御方法との相違は減速フューエルカット時のスロットル開度にある。第1比較制御方法では、アイドル開度までスロットルを閉じているのに対し、第2比較制御方法では、本ルーチンの実行時と同じく、アイドル開度よりもさらに小さい開度までスロットルを閉じている。以下、これらの比較例による制御結果と比較しながら、本ルーチンによって得られる作用及び効果について説明する。
【0061】
減速時には、アクセルペダルのオフと連動してスロットル38が閉じ方向に制御され、スロットル開度は速やかに減少していく。そして、スロットル開度がアイドル開度まで減少したら(時点t1)、それをトリガとしてフューエルカットが実行される。フューエルカットの実行時には、ECU60からバルブタイミング可変機構50に対してバルブタイミングVVTを減速F/C時目標値vt2に一致させるための指令が発せられると同時に、第1気筒#1の可変動弁装置52,54に対してバルブ12,14を停止させるための指令が発せられる。
【0062】
ECU60からの指令に対し、実際にバルブタイミングVVTが変化し始めるまでにはタイムラグがある。一方、可変動弁装置52,54によるバルブ12,14の作動から停止への切替えは、ECU60からの指令後、速やかに実行される。これにより、フューエルカットが実行されると略同じタイミングで第1気筒#1の運転は休止され、1気筒減筒運転が開始される。
【0063】
本ルーチンでは、スロットル38はアイドル開度よりも小さい所定開度まで閉じられる。スロットル38を閉じるほど、吸入空気量を減少させて触媒46の劣化を抑制できる反面、吸気管負圧は増大することになる。第1比較制御方法では、スロットル38をアイドル開度に制限することで吸気管負圧の増大を抑制しているが、その分、吸入空気量が大きくなって触媒46は劣化しやすくなる。一方、第2比較制御方法のように、スロットル38をアイドル開度よりも小さい開度まで閉じた場合には、吸入空気量を低減できる分、吸気管負圧はオイル上がり許容負圧を超えて増大してしまう。オイル上がり許容負圧は、燃焼室10内へのオイル上がり量を許容量に保つことができる限界負圧に対応する。
【0064】
これに対し、本ルーチンによれば、1気筒減筒運転が実行されることで吸気管負圧の増大は抑制され、スロットル38をアイドル開度よりも小さい開度まで閉じているにもかかわらず、吸気管負圧はオイル上がり許容負圧以下に維持される。これにより、吸入空気量を制限して触媒46の劣化を抑制しつつ、吸気管負圧の増大に伴う燃焼室10内へのオイル上がりも防止することが可能になる。
【0065】
フューエルカットが実行され、1気筒減筒運転が実行された後、暫くしてからバルブタイミングVVTが変化し始める(時点t2)。バルブタイミングVVTの進角に伴い、バルブオーバーラップ期間が拡大し、内部EGR量は増大していく。その結果、バルブタイミングVVTの変化に合わせて吸気管負圧も減少していく。
【0066】
本ルーチンでは、実バルブタイミングvttが基準値Aよりも大きくなった時点で、ECU60から第1気筒#1の可変動弁装置52,54に対してバルブ12,14を作動させるための指令が発せられる(時点t3)。可変動弁装置52,54によるバルブ12,14の停止から作動への切替えは、ECU60からの指令後、速やかに実行される。これにより、第1気筒#1の運転が再開されて1気筒減筒運転は終了する。
【0067】
第1気筒#1の運転が再開されることで、その分、サージタンク34内の空気は消費され、吸気管負圧は増大する。しかし、上記の基準値Aは、オイル上がりを防止できる程度の内部EGR量が確保される値に設定されているので、1気筒減筒運転の終了に伴い吸気管負圧が増大したとしても、吸気管負圧がオイル上がり許容負圧を超えてしまうことはない。これにより、触媒46の劣化と吸気管負圧の増大とを抑制しつつ、エンジンのポンピングロスの増大によって、より高い減速性も得られるようになる。
【0068】
次に、再び図6のフローチャートに戻り、ステップ102の判定で減速F/C条件の不成立が認められた場合について説明する。減速F/C条件の不成立が認められた場合、先ず、ステップ118の処理が実行される。減速F/C条件が不成立となる場合としては、減速フューエルカットを実行する状況にない場合(例えば、定常運転や加速運転中)や、減速フューエルカットからの復帰中である場合が挙げられる。減速フューエルカットからの復帰は、ドライバによりアクセルペダルが踏まれたときの他、エンジン回転数が所定の基準回転数以下まで低下したときや、触媒46の温度が所定の基準温度以下まで低下したとき等に自然に実行される(以下、自然復帰という)。
【0069】
ステップ118では、減速F/C条件の不成立が、減速フューエルカットからの緩加速による復帰、或いは自然復帰によるものか否か判定される。緩加速による復帰か否かは、スロットル開度、或いは、スロットル開度の変化量から判断することができる。
【0070】
減速F/C条件の不成立が緩加速復帰或いは自然復帰以外の理由による場合、ステップ134及びステップ136の処理が実行される。ステップ134では、全気筒を作動させた通常の運転が実行される。例えば、減速フューエルカットからの急加速による復帰の場合、1気筒減筒運転を行うことなく全気筒を作動させ、全気筒同時にフューエルカットから復帰させる。次のステップ136では、ステップ100で取り込まれたエンジン運転状態に応じた目標値にバルブタイミングVVTが制御される。
【0071】
減速F/C条件の不成立が緩加速復帰或いは自然復帰による場合は、さらに、フラグXFCが1か否か判定される(ステップ120)。フラグXFCは、減速フューエルカットの実行中、或いは、減速フューエルカットからの復帰のためのエンジン制御中を示すフラグであり、その間は1に保持されている。そして、減速フューエルカットから完全に復帰するとき、後述するステップ132の処理によって0にリセットされる。減速フューエルカットからの復帰後は、ステップ120の条件は不成立となり、その場合はステップ134及びステップ136の処理によってエンジン制御が行われる。
【0072】
フラグXFCが1の場合には、さらに、フラグXVVTbが0か否か判定される(ステップ122)。フラグXVVTbが0の間は、後述するステップ124及びステップ126の処理によってエンジン制御が行われ、フラグXVVTbが1になったら、ステップ134及びステップ136の処理によるエンジン制御へ、エンジン制御の方法が切替えられる。減速フューエルカットからの復帰制御の開始時、フラグXVVTbの初期値は0になっている。
【0073】
ステップ124では、1気筒減筒運転が行われ、4つの気筒#1〜#4のうち何れか1つの気筒(例えば、第1気筒#1)のみ、その運転が休止される。また、同時に、休止気筒を除く他の気筒#2〜#4についてフューエルカットが解除され、それらの気筒#2〜#4では、インジェクタ40からの燃料噴射が再開される。このように、1気筒減筒運転を行うことで、次のような効果が得られる。
【0074】
減速フューエルカットからの緩加速復帰時、或いは自然復帰時には、スロットル38は未だ大きく開かれていないため(例えば、アイドル開度程度)、スロットル38を通って吸入される空気量は少ない。しかも、減速フューエルカット時の制御によってバルブタイミングVVTは進角されており、内部EGR量は増大している。この状態で全気筒についてフューエルカットを解除すると、新規ガスの不足によって失火が発生し、排気エミッションが悪化してしまう可能性がある。失火を回避する手段としては、バルブタイミングVVTを遅角することが考えられる。バルブタイミングVVTを進角することで、吸気バルブ12と排気バルブ14のバルブオーバーラップ期間を縮小し、内部EGR量を減少させることができるからである。
【0075】
しかし、前述のように、バルブタイミング可変機構50の機構上、バルブタイミング可変機構50に対してバルブタイミングVVTを遅角させるための指令が発せられた後、現実にVVTが変化して失火を回避できる程度に内部EGR量が減少するまでには、ある程度のアクチュエータ作動時間が必要である。このため、減速フューエルカットからの復帰時、直ぐにバルブタイミング可変機構50を作動させても、内部EGR量が十分に減少するまでにはタイムラグが生じ、そのタイムラグの間は失火を効果的に回避することができない。
【0076】
そこで、本ルーチンでは、減速フューエルカットからの復帰時に確実に失火を回避するための手段として、1気筒減筒運転を実施する。1気筒減筒運転を実施することで第1気筒#1での空気の消費が無くなり、その分、吸気管負圧が減少する。その結果、フューエルカットを解除された運転気筒#2〜#4では、燃焼室10内に吸入される新規ガスの量が増大し、それら気筒#2〜#4での失火は回避される。
【0077】
ステップ126では、バルブタイミングVVTを通常運転時の目標値に向けて進角させるように、バルブタイミング可変機構50が制御される。そして、次のステップ128では、実バルブタイミングvttが基準値Bよりも小さくなったか否か判定される。基準値Bは前述の基準値Aよりも小さい値である。ステップ128の判定で用いられるvtt<Bなる条件は、1気筒減筒運転を実施せずとも失火を回避できる程度に内部EGR量が減少したかを判断するための条件である。
【0078】
ステップ128の判定で実バルブタイミングvttが基準値Bよりも小さくなるまでは、フラグXVVTbは0に保持される。その間、ステップ122の判定結果はYesとなり、第1気筒#1の運転休止による1気筒減筒運転(ステップ124)が継続される。ステップ128の判定でvttがBを下回ったとき、次のステップ130で、フラグXVVTbは1にセットされる。
【0079】
バルブタイミングVVTの遅角が進むことで、やがて、実バルブタイミングvttは基準値Bよりも小さくなる。実バルブタイミングvttが基準値Bを下回ったときには、失火を回避できる程度まで内部EGR量は減少している。したがって、この段階では、1気筒減筒運転を行わずとも、バルブタイミングVVTの制御のみによって失火を回避することが可能になっている。
【0080】
そこで、ステップ128の判定でvtt<Bなる条件が成立し、ステップ130でフラグXVVTbが1にセットされた場合には、ステップ122からステップ134へ進み、1気筒減筒運転が中止される。つまり、第1気筒#1の可変動弁装置52,54の作動により、第1気筒#1の吸気バルブ12及び排気バルブ14は、ともに停止から作動へ切替えられる。そして、運転休止を解除された第1気筒#1についても、他の気筒#2〜#4と同様にフューエルカットが解除される。
【0081】
このように、内部EGR量を十分に減少させた状態で、第1気筒#1の気筒休止とフューエルカットが解除されることで、失火を生じさせることなく減速フューエルカットから完全復帰することが可能になる。減速フューエルカットからの完全復帰後は、バルブタイミングVVTはエンジン運転状態に応じた目標値に制御される(ステップ136)。
【0082】
なお、フラグXFCは、減速フューエルカットから完全復帰する際、つまり、vtt<Bなる条件が成立してステップ130でフラグXVVTbが1にセットされた場合に、0にリセットされる。また、フラグXFCは、減速フューエルカットからの完全復帰後の通常運転(ステップ134及びステップ136)が実施される場合にも、0にリセットされる。フラグXFCが0にリセットされる場合には、同時にフラグXVVTaも0にリセットされる(以上、ステップ132)。
【0083】
以上説明した通り、図6に示すルーチンによれば、減速フューエルカット時には、スロットル38が閉じ側に調整されることで吸入空気量が低減され、それにより触媒46の劣化が抑制される。その際、1気筒減筒運転により第1気筒#1の運転が休止されるので、第1気筒#1による空気の消費がなくなり、その分、サージタンク34内の空気密度は増加少する。これにより、吸気管負圧の増大は抑制され、燃焼室10内の負圧が増大することによるオイル上がりが防止される。
【0084】
その後、バルブタイミング可変機構50によってバルブタイミングVVTが進角され、内部EGR量が所望量まで増量されたら、第1気筒#1の運転休止は解除され、以降は内部EGR量の増量によって吸気管負圧の増大が抑制される。第1気筒#1の運転休止が解除されることで、その分、エンジンのポンピングロスが増大し、より高い減速性を得られるようになる。
【0085】
また、図6に示すルーチンによれば、減速フューエルカットからの復帰時には、1気筒減筒運転により第1気筒#1の運転を休止させ、休止気筒以外の気筒#2〜#4についてフューエルカットが解除された状態で、内部EGR量の減量が行われる。第1気筒#1の運転を休止させることで吸気管負圧は大きく減少し、休止気筒以外の気筒#2〜#4では燃焼室10内に吸入される新規ガスの量が増大する。その結果、フューエルカットが解除された気筒#2〜#4での失火は回避される。そして、内部EGR量が十分に減量された状態で、第1気筒#1についても気筒休止とフューエルカットが解除されることで、失火を生じさせることなく減速フューエルカットから完全復帰することができる。
【0086】
さらに、図6に示すルーチンによれば、減速フューエルカットからの急加速による復帰時、つまり、減速フューエルカットからの復帰時にエンジンに高負荷が要求されているときには、直ちに全気筒についてフューエルカットが解除される。これにより、要求負荷に応じたトルクを速やかに出力することが可能になる。また、この場合は、要求負荷に応じてスロットル38が大きく開かれるため、燃焼室10内には十分な量の新規ガスが吸入される。したがって、1気筒減筒運転やバルブタイミングVVTの遅角を行わずとも、フューエルカットが解除された気筒での失火は回避される。
【0087】
なお、上述した実施の形態においては、ECU60が、エンジンの減速時にフューエルカットを実行することにより本発明における「フューエルカット手段」が実現され、スロットル38を制御することにより「吸入空気量調整手段」が実現され、バルブタイミング可変機構50を制御することにより「再循環量調整手段」が実現され、可変動弁装置52,54を制御することにより「気筒休止手段」が実現されている。
【0088】
また、上述した実施の形態においては、ECU60が、図6に示すルーチンのステップ102の処理を実行することにより「フューエルカット判定手段」と「フューエルカット復帰判定手段」とが実現されている。また、ステップ118の処理を実行することにより「要求負荷が高負荷か低負荷か判定する手段」が実現されている。
【0089】
さらに、上述した実施の形態においては、ECU60が、図6に示すルーチンを実行することにより本発明における「制御手段」が実現されている。特に、ステップ104の処理を実行することにより「第1の制御」、「第2の制御」及び「第3の制御」が実行され、ステップ106,108,110,112,114の処理を実行することにより「第4の制御」が実行される。また、ステップ124の処理を実行することにより「第5の制御」及び「第6の制御」が実行され、ステップ126の処理を実行することにより「第7の制御」が実行され、ステップ122,128,130,134の処理を実行することにより「第8の制御」が実行される。さらに、ステップ118,134の処理を実行することにより「第9の制御」が実行される。
【0090】
以上、本発明の実施の形態について説明したが、本発明は上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において変形して実施することもできる。例えば、次のように変形して実施してもよい。
【0091】
上述した実施の形態においては、減筒運転により気筒休止を行う場合、可変動弁装置52,54によって吸気バルブ12と排気バルブ14の両方を閉状態で停止させているが、吸気バルブ12と排気バルブ14の何れか一方のみを閉状態で停止させるようにしてもよい。吸気バルブ12及び排気バルブ14の少なくとも一方が閉状態で停止していれば、当該気筒での空気の消費がなくなるので、吸気管負圧の増大を抑制することができる。
【0092】
また、上述した実施の形態においては、減筒運転を行う場合、1気筒のみ運転を休止させているが、複数の気筒の運転を休止させるようにしてもよい。休止させる気筒数によって、気筒休止により実現される吸気管負圧の大きさを制御することができる。また、減速フューエルカット時に複数気筒の運転を休止させる場合には、バルブタイミングVVTの進角に伴う内部EGR量の増大に応じて、1気筒ずつ段階的に気筒休止を解除していくようにしてもよい。同様に、減速フューエルカットからの復帰時に複数気筒の運転を休止させる場合には、バルブタイミングVVTの遅角に伴う内部EGR量の減少に応じて、1気筒ずつ段階的に気筒休止を解除していくようにしてもよい。
【0093】
また、上述した実施の形態においては、バルブタイミング可変機構50により吸気バルブ12のバルブタイミングを制御してバルブオーバーラップ期間を変化させ、その結果として内部EGR量を変化させることとしているが、内部EGR量を変化させる手法は、このような手法に限定されるものではない。例えば、排気バルブ14にもバルブタイミング可変機構が備えられる場合には、排気バルブ14のバルブタイミングを制御してバルブオーバーラップ期間を変化させ、その結果として内部EGR量を変化させることとしてもよい。
【0094】
また、排気バルブ14のバルブタイミングを可変制御できる場合、内部EGR量を変化させる手法は、バルブオーバーラップ期間を増減させる手法に限定されるものではない。排気バルブ14の閉弁時期を排気上死点以前のクランク角領域に設定した場合、その閉弁時期を前後させることにより、排気行程において燃焼室10内に閉じ込められる残留ガス量が増減する。このため、内部EGR量は、排気バルブ14の閉弁時期を排気上死点以前のクランク角領域で調整することにより増減させることとしてもよい。
【0095】
また、上述した実施の形態においては、内部EGR量を増やすことにより吸気管負圧の増大を抑制することとしているが、その抑制手法はこれに限定されるものではない。すなわち、排気通路(例えば、排気管44)と吸気通路(例えば、吸気マニホールド32)とをEGR通路で接続し、EGR通路に配置したEGR弁の開度を制御して、排気通路から吸気通路へ供給される排気ガスの流量(外部EGR量)を増やすことにより同様の機能を実現することとしてもよい。
【0096】
また、上述した実施の形態においては、スロットル開度を制御することにより、負圧の大きさと触媒46を流れる空気の流量とを制御することとしているが、その制御の対象はこれに限定されるものではない。すなわち、負圧の大きさと、触媒46を流通する空気の流量とは、吸入空気量を増減させることにより制御することが可能である。従って、実施の形態と同様の機能は、スロットル開度に限らず、吸入空気量を変化させる要素を制御することによっても達成することが可能である。具体的には、スロットルレスのエンジンであれば、吸気バルブのリフト量、作用角、開弁タイミングなどを変化させることにより、また、スロットルをバイパスするアイドルスピードコントロール(ISC)バルブを備えるエンジンであれば、そこを通過するISCバルブ流量を変化させることにより実施の形態の場合と同様の機能を実現することができる。
【図面の簡単な説明】
【0097】
【図1】本発明の実施の形態としての制御装置が適用される内燃機関の概略構成を示す図である。
【図2】図1に示す内燃機関のシリンダヘッド部を上方から見た図である。
【図3】本発明の実施の形態における可変動弁装置の概略構成を示す斜視図である。
【図4】図3に示す可変動弁装置の側部断面構造を示す図である。
【図5A】図3に示す可変動弁装置のロックピン付近の側部断面構造を示す図であり、締結解除時の態様を示す図である。
【図5B】図3に示す可変動弁装置のロックピン付近の側部断面構造を示す図であり、締結時の態様を示す図である。
【図6】本発明の実施の形態において実行される減速フューエルカット時及び減速フューエルカットからの復帰時の制御のルーチンを示すフローチャートである。
【図7】図6に示すルーチンを実行することで実現される動作の一例を示すタイムチャートである。
【符号の説明】
【0098】
4 シリンダヘッド
6 シリンダブロック
8 ピストン
10 燃焼室
12 吸気バルブ
14 排気バルブ
16 点火プラグ
18 吸気ポート
20 排気ポート
24 クランク軸
26 吸気カムシャフト
26a 吸気カム
28 排気カムシャフト
28a 排気カム
32 吸気マニホールド
34 サージタンク
38 スロットル
40 インジェクタ
42 排気マニホールド
46 触媒
50 バルブタイミング可変機構
52 吸気側の可変動弁装置
54 排気側の可変動弁装置
60 ECU
62 クランク角センサ
64 スロットルセンサ
66 エアフローメータ
68 水温センサ




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013