米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 機械工学 -> トヨタ自動車株式会社

発明の名称 動力伝達制御装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−2920(P2007−2920A)
公開日 平成19年1月11日(2007.1.11)
出願番号 特願2005−183748(P2005−183748)
出願日 平成17年6月23日(2005.6.23)
代理人 【識別番号】100077481
【弁理士】
【氏名又は名称】谷 義一
発明者 山下 俊哉 / 茨木 隆次 / 桑原 貴史 / 吉田 倫生 / ▲柳▼田 朋亮
要約 課題
駆動源の出力軸と変速機の入力軸との間に組み込まれた流体伝動装置の出力側回転要素におけるタービンシェル側とタービンハブ側との相対回転を機械的に制限するストッパの作動に伴い、急激なトルク変動や衝撃音などが発生する。

解決手段
出力側回転要素のタービンシェル32側とタービンハブ34側との間に組み込まれてこれらの相対回転を許容し、これらの相対回転に伴って弾性変形するコイルばね48を含むダンパ11Eと、タービンシェル32側とタービンハブ34側との所定量を越える相対回転を機械的に制限するストッパ11Fとを有するトルクコンバータ11がエンジン10の出力軸とCVT13の入力軸28との間に組み込まれた本発明による動力伝達制御装置は、ストッパ11Fの作動に伴う衝撃を緩和するための衝撃緩和手段を具える。
特許請求の範囲
【請求項1】
駆動源からの動力を出力要素に伝達するための動力伝達経路の途中に組み込まれて駆動側と被駆動側との相対回転を許容するダンパを具え、このダンパが前記駆動側と被駆動側との相対回転に伴って弾性変形する弾性変形要素と、前記駆動側と被駆動側との所定量を越える相対回転を機械的に制限するストッパとを有する動力伝達制御装置であって、
前記ストッパの作動に伴う衝撃を緩和するための衝撃緩和手段をさらに具えたことを特徴とする動力伝達制御装置。
【請求項2】
前記衝撃緩和手段は、前記駆動源の出力軸の駆動トルクを低減する手段を有することを特徴とする請求項1に記載の動力伝達制御装置。
【請求項3】
入力側回転要素と出力側回転要素とを有する流体伝動装置をさらに具え、前記駆動側が前記出力側回転要素のタービンシェル側であり、前記被駆動側が前記出力回転要素のタービンハブ側であることを特徴とする請求項1または請求項2に記載の動力伝達制御装置。
【請求項4】
前記流体伝動装置がトルクコンバータであり、このトルクコンバータは前記出力側回転要素に取り付けられて前記入力側回転要素に対し一体的に係合し得るロックアップクラッチを有することを特徴とする請求項3に記載の動力伝達制御装置。
【請求項5】
前記流体伝動装置の出力側回転要素に連結され、動力伝達に寄与する摩擦係合要素を有する自動変速機をさらに具え、前記衝撃緩和手段はこの自動変速機の摩擦係合要素のスリップ量を増大させる手段を有することを特徴とする請求項3または請求項4に記載の動力伝達制御装置。
【請求項6】
前記流体伝動装置の出力側回転要素に連結されるベルト式無段変速機をさらに具え、このベルト式無段変速機は、前記衝撃緩和手段の作動の際にベルト挟圧力を増大する手段を有することを特徴とする請求項3または請求項4に記載の動力伝達制御装置。
【請求項7】
前記流体伝動装置の出力側回転要素の回転速度を検出する出力軸回転速度センサをさらに具え、前記衝撃緩和手段は、この出力軸回転速度センサによって検出される前記流体伝動装置の出力側回転要素の回転速度の変化率に基づき、これが所定値以上の場合に作動し、前記変化率が所定値未満の場合にその作動を停止することを特徴とする請求項3から請求項6の何れかに記載の動力伝達制御装置。
【請求項8】
前記衝撃緩和手段は、前記ストッパが前記タービンシェル側とタービンハブ側との相対回転を機械的に制限する直前に作動することを特徴とする請求項3から請求項7の何れかに記載の動力伝達制御装置。
【請求項9】
駆動源からの動力を出力要素に伝達するための動力伝達経路の途中に組み込まれて駆動側と被駆動側との相対回転を許容するダンパと、前記動力伝達経路の途中に組み込まれるベルト式無段変速機とを具え、前記ダンパが前記駆動側と被駆動側との相対回転に伴って弾性変形する弾性変形要素と、前記駆動側と被駆動側との所定量を越える相対回転を機械的に制限するストッパとを有し、前記ベルト式無段変速機がそのベルト挟圧力を増大させる挟圧力増大手段を有する動力伝達制御装置であって、
前記タービンシェル側とタービンハブ側との相対回転が所定量を越えるか否かを判定する判定手段と、
この判定手段による判定結果に基づいて前記挟圧力増大手段の作動を制御する制御手段とをさらに具えたことを特徴とする動力伝達制御装置。
【請求項10】
入力側回転要素と出力側回転要素とを有する流体伝動装置をさらに具え、前記駆動側が前記出力側回転要素のタービンシェル側であり、前記被駆動側が前記出力回転要素のタービンハブ側であることを特徴とする請求項9に記載の動力伝達制御装置。
【請求項11】
前記流体伝動装置がトルクコンバータであり、このトルクコンバータは前記出力側回転要素に取り付けられて前記入力側回転要素に対し一体的に係合し得るロックアップクラッチを有することを特徴とする請求項10に記載の動力伝達制御装置。
【請求項12】
前記判定手段は、前記流体伝動装置の出力側回転要素の回転速度を検出する出力軸回転速度センサを有し、前記制御手段は、この出力軸回転速度センサによって検出される前記流体伝動装置の出力側回転要素の回転速度の変化率に基づき、これが所定値以上の場合に前記挟圧力増大手段を作動させ、前記変化率が所定値未満の場合に前記挟圧力増大手段の作動を停止させることを特徴とする請求項10または請求項11に記載の動力伝達制御装置。
【請求項13】
前記挟圧力増大手段による前記ベルト式無段変速機のベルト挟圧力の増大は、前記ストッパが前記タービンシェル側とタービンハブ側との相対回転を機械的に制限する直前に行われることを特徴とする請求項10から請求項12の何れかに記載の動力伝達制御装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は、駆動源と出力要素との間の動力伝達経路の途中に、駆動側と被駆動側との所定量以下の相対回転を許容するストッパ付きダンパを組み込んだ動力伝達制御装置に関する。
【背景技術】
【0002】
機関と変速機との間に組み込まれるトルクコンバータなどの流体伝動装置は、機関のトルク変動などを緩和して変速機側に伝達することができる反面、流体を介在させることによる損失が発生し、燃費の低下を招来するという欠点を持つ。このため、トルク変動の少ない機関の高回転領域において、入力側回転要素と出力側回転要素とを一体的に接続し得るロックアップクラッチを流体伝動装置に組み込むことが一般的である。しかながら、このようなロックアップクラッチ機構を組み込んだ流体伝動装置においては、ロックアップクラッチ機構によって入力側回転要素と出力側回転要素とを直結状態にした場合、内燃機関などの入力部材のトルク変動がそのまま出力側回転要素に伝達されてしまうこととなる。この結果、車両などにおいては乗り心地が悪化してしまう懸念がある。
【0003】
このようなことから、出力側回転要素の途中にダンパを組み込み、入力側回転要素にて発生するトルク変動がそのまま出力側回転要素に伝わらないように配慮したトルクコンバータが例えば特許文献1にて提案されている。この特許文献1に開示されたトルクコンバータは、ロックアップクラッチが接続していない状態においても、出力側回転要素のタービンシェル側とタービンハブ側との間での相対回転がダンパによって許容される。
【0004】
通常、このようなダンパを組み込んだ流体伝動装置においては、ダンパスプリングを保護するため、タービンシェル側とタービンハブ側との相対回転量を或る範囲内に規制するストッパを付設している。ちなみに、タービンシェル側とタービンハブ側との相対回転許容量は、例えば内燃機関で発生し得る最大駆動トルクの1.3〜1.5倍程度に設定される。
【0005】
【特許文献1】特開平9−53700号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
通常、流体伝動装置に組み込まれるロックアップクラッチは、高車速かつ低スロットル開度の運転領域にて接続状態となるが、低車速かつ高スロットル開度の運転領域ではロックアップクラッチが非接続状態となる。従って、この流体伝動装置がトルクコンバータの場合、低車速かつ高スロットル開度の運転領域においてトルク増大を図ることができるという利点がある。この反面、例えば急発進時などのようにスロットル開度を大きく変化させると、流体伝動部での2倍程度のトルク増幅と相俟って大きな駆動トルクが発生する。出力側回転要素のタービンシェル側とタービンハブ側との間にダンパを組み込んだ特許文献1の如き流体伝動装置においては、このような大きな駆動トルクの変化を完全に吸収し切ることができない。この結果、タービンシェル側とタービンハブ側との相対回転を規制するストッパの衝突に伴って衝撃音が発生したり、急激なトルク変動が生じて乗員に不快感を与えるおそれがある。特に、ベルト式無段変速機を組み込んだ車両にあっては、急激なトルク変動はベルトの滑りをもたらすため、その摩耗による耐久性の低下を招来することとなる。
【0007】
同様な不具合は、機関などの駆動源と駆動輪などの出力要素との間の動力伝達経路の途中に上述したストッパ付きダンパを組み込んだ場合にも生ずるおそれがある。
【0008】
本発明の目的は、駆動源からの動力を出力要素に伝達するための動力伝達経路の途中に組み込まれ、駆動側と被駆動側との相対回転に伴って弾性変形する弾性変形要素と、駆動側と被駆動側との所定量を越える相対回転を機械的に制限するストッパとを有するダンパを具え、このダンパのストッパの作動に伴って発生する衝撃音や不快なトルク変動などを緩和し得る動力伝達制御装置を提供することにある。
【課題を解決するための手段】
【0009】
本発明の第1の形態は、駆動源からの動力を出力要素に伝達するための動力伝達経路の途中に組み込まれて駆動側と被駆動側との相対回転を許容するダンパを具え、このダンパが前記駆動側と被駆動側との相対回転に伴って弾性変形する弾性変形要素と、前記駆動側と被駆動側との所定量を越える相対回転を機械的に制限するストッパとを有する動力伝達制御装置であって、前記ストッパの作動に伴う衝撃を緩和するための衝撃緩和手段をさらに具えたことを特徴とするものである。
【0010】
本発明においては、駆動源からの動力が動力伝達経路およびその途中に組み込まれたダンパを介して出力要素に伝達される。この場合、駆動トルクの変動に伴って発生する駆動側と被駆動側との相対回転がダンパの弾性変形要素の弾性変形によって吸収される。また、駆動側と被駆動側との過大な相対回転は、ストッパによって機械的に制限されるが、このストッパの作動に伴って発生する衝撃音や急激なトルク変動が衝撃緩和手段によって緩和される。
【0011】
本発明による駆動源は、内燃機関のみならず、電動モータやこれらを組み合わせたものなどを意図していることに注意されたい。また、本発明による出力要素は、駆動輪のみならず、この駆動輪と駆動源との間の動力伝達経路の途中に組み込まれる任意の要素、例えば手動クラッチ,トルクコンバータなどに代表される流体伝動装置,自動変速機やベルト式無段変速機などの変速機,差動歯車装置なども意図していることを理解されたい。従って、ダンパは駆動源と駆動輪との間の動力伝達経路の途中であれば、その組み込み位置を任意に選択し得るものである。
【0012】
本発明の第1の形態による動力伝達制御装置において、衝撃緩和手段が駆動源の出力軸の駆動トルクを低減する手段を有するものであってよい。
【0013】
また、入力側回転要素と出力側回転要素とを有する流体伝動装置をさらに具えることができ、この場合には駆動側が出力側回転要素のタービンシェル側となり、被駆動側が出力回転要素のタービンハブ側となる。特に、低回転領域におけるトルク変動が大きなトルクコンバータは、本発明における流体伝動装置として特に好適であり、その入力側回転要素と出力側回転要素とを機械的に接続させ得るロックアップクラッチを有するものであってよい。
【0014】
上述した流体伝動装置の出力側回転要素に連結され、動力伝達に寄与する摩擦係合要素を有する自動変速機をさらに具えることができる。この場合、衝撃緩和手段はこの自動変速機の摩擦係合要素のスリップ量を増大させる手段を有するものであってよい。
【0015】
あるいは、流体伝動装置の出力側回転要素に連結されるベルト式無段変速機をさらに具えることができる。この場合、ベルト式無段変速機は、衝撃緩和手段の作動の際またはストッパの作動の際にベルト挟圧力を増大する手段を有するものであってよい。
【0016】
上述した流体伝動装置の出力側回転要素の回転速度を検出する出力軸回転速度センサをさらに具えることができる。この場合、衝撃緩和手段は、この出力軸回転速度センサによって検出される流体伝動装置の出力側回転要素の回転速度の変化率に基づき、これが所定値以上の場合に作動し、変化率が所定値未満の場合にその作動を停止するものであってよい。
【0017】
衝撃緩和手段は、ストッパがタービンシェル側とタービンハブ側との相対回転を機械的に制限する直前に作動することが好ましい。
【0018】
本発明の第2の形態は、駆動源からの動力を出力要素に伝達するための動力伝達経路の途中に組み込まれて駆動側と被駆動側との相対回転を許容するダンパと、前記動力伝達経路の途中に組み込まれるベルト式無段変速機とを具え、前記ダンパが前記駆動側と被駆動側との相対回転に伴って弾性変形する弾性変形要素と、前記駆動側と被駆動側との所定量を越える相対回転を機械的に制限するストッパとを有し、前記ベルト式無段変速機がそのベルト挟圧力を増大させる挟圧力増大手段を有する動力伝達制御装置であって、前記駆動側と被駆動側との相対回転が所定量を越えるか否かを判定する判定手段と、この判定手段による判定結果に基づいて前記挟圧力増大手段の作動を制御する制御手段とをさらに具えたことを特徴とするものである。
【0019】
本発明においては、駆動源からの動力が動力伝達経路とその途中に組み込まれたダンパおよびベルト式無段変速機とを介して出力要素に伝達される。この場合、駆動トルクの変動に伴って発生する駆動側と被駆動側との相対回転がダンパの弾性変形要素の弾性変形によって吸収される。また、駆動側と被駆動側との過大な相対回転は、ストッパによって機械的に制限される。判定手段は、駆動側と被駆動側との相対回転が所定量を越えるか否かを判定し、この判定結果に基づいて制御手段が挟圧力増大手段の作動を制御する。
【0020】
本発明の第2の形態による動力伝達制御装置において、入力側回転要素と出力側回転要素とを有する流体伝動装置をさらに具えることができる。この場合、この場合駆動側が出力側回転要素のタービンシェル側となり、被駆動側が出力回転要素のタービンハブ側となる。特に、低回転領域におけるトルク変動が大きなトルクコンバータは、本発明における流体伝動装置として特に好適であり、その入力側回転要素と出力側回転要素とを機械的に接続させ得るロックアップクラッチを有するものであってよい。
【0021】
判定手段が流体伝動装置の出力側回転要素の回転速度を検出する出力軸回転速度センサを有し、制御手段は、この出力軸回転速度センサによって検出される流体伝動装置の出力側回転要素の回転速度の変化率に基づき、これが所定値以上の場合に挟圧力増大手段を作動させ、変化率が所定値未満の場合に挟圧力増大手段の作動を停止させるものであってよい。回転速度が検出される出力側回転要素は、タービンシェル側でもタービンハブ側でもかまわない。
【0022】
また、挟圧力増大手段によるベルト式無段変速機のベルト挟圧力の増大は、ストッパがタービンシェル側とタービンハブ側との相対回転を機械的に制限する直前に行うことが好ましい。
【発明の効果】
【0023】
本発明の第1の形態の動力伝達制御装置によると、駆動源からの動力を出力要素に伝達するための動力伝達経路の途中に組み込まれて駆動側と被駆動側との相対回転を許容するダンパを具え、このダンパが駆動側と被駆動側との相対回転に伴って弾性変形する弾性変形要素と、駆動側と被駆動側との所定量を越える相対回転を機械的に制限するストッパとを有し、このストッパの作動に伴う衝撃を緩和するための衝撃緩和手段をさらに具えているので、ストッパの作動時に発生する衝撃音や急激なトルク変動を緩和することができ、ストッパの耐久性も向上させることが可能である。
【0024】
衝撃緩和手段が駆動源の出力軸の駆動トルクを低減する手段を有する場合、ストッパの作動時に発生する衝撃音や急激なトルク変動を駆動源の出力軸の駆動トルクを低減することによって緩和することが可能である。
【0025】
入力側回転要素と出力側回転要素とを有する流体伝動装置をさらに具え、駆動側を出力側回転要素のタービンシェル側とし、被駆動側を出力回転要素のタービンハブ側とした場合、流体伝動装置を具えた動力伝達制御装置に関しても本発明を適用させることができる。
【0026】
流体伝動装置がトルクコンバータであり、このトルクコンバータが出力側回転要素に取り付けられて入力側回転要素に対し一体的に係合し得るロックアップクラッチを有する場合、ストッパの作動時に発生するより大きな衝撃音や急激なトルク変動を効率よく緩和することができる。
【0027】
流体伝動装置の出力側回転要素に連結され、動力伝達に寄与する摩擦係合要素を有する自動変速機をさらに具え、衝撃緩和手段がこの自動変速機の摩擦係合要素のスリップ量を増大させる手段を有する場合、ストッパの作動時に発生する衝撃音や急激なトルク変動を自動変速機の摩擦係合要素のスリップ量を増大させることによって緩和することができる。
【0028】
変速機がベルト式無段変速機であって、このベルト式無段変速機が衝撃緩和手段の作動の際にベルト挟圧力を増大する手段を有する場合、急激なトルク変動に伴って発生するベルトの滑りを抑制してその耐久性の低下を抑制することができる。
【0029】
流体伝動装置の出力側回転要素の回転速度を検出する出力軸回転速度センサをさらに具え、衝撃緩和手段は、この出力軸回転速度センサによって検出される流体伝動装置の出力側回転要素の回転速度の変化率に基づき、これが所定値以上の場合に作動し、変化率が所定値未満の場合にその作動を停止するようにした場合、衝撃緩和手段を無駄に作動させる可能性を少なくすることができ、より円滑な動力伝達を行うことが可能である。
【0030】
ストッパがタービンシェル側とタービンハブ側との相対回転を機械的に制限する直前に衝撃緩和手段を作動させるようにした場合、ストッパの作動時に発生する衝撃音や不快なトルク変動をより確実に抑制することができる。
【0031】
本発明の第2の形態の動力伝達制御装置によると、駆動側と被駆動側との相対回転が所定量を越えるか否かを判定する判定手段と、この判定手段による判定結果に基づいて挟圧力増大手段の作動を制御する制御手段とを具えているので、急激なトルク変動に伴って発生するベルトの滑りを抑制してベルト式無段変速機の耐久性の低下を防ぐことができる。
【0032】
入力側回転要素と出力側回転要素とを有する流体伝動装置をさらに具え、駆動側を出力側回転要素のタービンシェル側とし、被駆動側を出力回転要素のタービンハブ側とした場合、流体伝動装置を具えた動力伝達制御装置に関しても本発明を適用させることができる。
【0033】
流体伝動装置がトルクコンバータであって、このトルクコンバータが出力側回転要素に取り付けられて入力側回転要素に対し一体的に係合し得るロックアップクラッチを有する場合、ストッパの作動時に発生するより大きな衝撃音や急激なトルク変動に伴って発生するベルトの滑りを効率よく抑制することができる。
【0034】
判定手段が流体伝動装置の出力側回転要素の回転速度を検出する出力軸回転速度センサを有し、制御手段は、この出力軸回転速度センサによって検出される流体伝動装置の出力側回転要素の回転速度の変化率に基づき、これが所定値以上の場合に挟圧力増大手段を作動させ、変化率が所定値未満の場合に挟圧力増大手段の作動を停止させる場合、挟圧力増大手段を無駄に作動させる可能性を少なくすることができ、より円滑な動力伝達を行うことが可能である。
【0035】
ストッパが出力側回転要素におけるタービンシェル側とタービンハブ側との相対回転を機械的に制限する直前に、挟圧力増大手段によってベルト式無段変速機のベルト挟圧力を増大させるようにした場合、急激なトルク変動に伴って発生するベルトの滑りをより確実に抑制してベルト式無段変速機の耐久性の低下をさらに防ぐことができる。
【発明を実施するための最良の形態】
【0036】
本発明による動力伝達制御装置をトルクコンバータとベルト式自動変速機とが組み込まれた車両に応用した一実施形態について、図1〜図13を参照しながら詳細に説明するが、本発明はこのような実施形態に限らず、特許請求の範囲に記載された本発明の概念に包含されるあらゆる変更や修正が可能であり、従って本発明の精神に帰属する他の任意の技術にも当然応用することができる。
【0037】
本実施形態における動力伝達装置の概念を図1に示す。本発明における駆動源としての火花点火式内燃機関(以下、エンジンと呼称する)10からの出力は、本発明における流体伝動装置としてのトルクコンバータ11および前後進切換装置12を介してベルト式無段変速機(以下、CVTと呼称する)13に伝達される。そして、このCVT13の出力軸14に設けられた出力歯車15から図示しない差動歯車装置を介して左右の駆動輪にエンジン10からの動力が分配されるようになっている。後述するトルクコンバータ11のロックアップクラッチ11A,前後進切換装置12の一対の摩擦係合要素である直結クラッチ16および反力ブレーキ17,CVT13の入力プーリ18および出力プーリ19は、何れも液圧制御回路20を介した作動液の給排操作によってこれらの作動が制御される。また、この液圧制御回路20に組み込まれた図示しない多数の電磁弁は、図示しない火花点火装置や燃料噴射装置などが組み込まれたエンジン10と共に後述する各種センサからの検出信号に基づき、制御装置21を介してそれらの作動が制御される。制御装置21には、車両の走行速度を検出する車速センサ22や、エンジン10のクランク軸23の回転位相を検出するクランク角センサ24,トルクコンバータ11の出力軸となるタービンハブの回転数を検出するタービン回転数センサ25,運転者によって操作される図示しないシフトレバーの位置を検出するシフトポジションセンサ26,運転者によって操作される図示しないアクセルペダルの踏み込み量を検出するアクセル開度センサ27,CVT13の入力軸28および出力軸14の回転速度をそれぞれ検出する変速機入力軸回転数センサ29a,変速機出力軸回転数センサ29bなどが接続している。上述したクランク角センサ24は、エンジン10の回転速度を検出するためのエンジン回転数センサとしても用いられる。
【0038】
トルクコンバータ11のロックアップクラッチ11Aが非係合状態の場合、その入力側回転要素11Cから第1出力側回転要素11Dへの動力伝達はCVT油(以下、これを作動液と呼称する)を介して行われる。ここで、入力側回転要素11Cの回転速度、つまりエンジン10の回転速度Nに対する第2出力側回転要素11Bの回転速度(以下、これをタービン回転速度と呼称する)Nの割合、つまり速度比e(=N/N)が例えば0.8よりも低い領域では、入力側回転要素11Cの回転トルク、つまりエンジン10の駆動トルクTに対する第2出力側回転要素11Bの回転トルク(以下、これをタービン駆動トルクと呼称する)Tの割合、つまりトルク比t(=T/T)が1よりも大きくなって、トルク増幅作用が働く。従って、速度比eが例えば0.8以上の領域では、ロックアップクラッチ11Aを係合状態に移行させ、入力側回転要素11Cから第1出力側回転要素11Dへの作動液を介した動力伝達における損失を解消し、これによって燃費の向上を図ることが望ましいと言える。
【0039】
エンジン10とCVT13との間に介装される本実施形態におけるトルクコンバータ11の断面構造(上半分)を図2に示し、そのダンパ11Eおよびストッパ11Fの部分の正面形状を一部破断して図3に示し、その外観の一部を分解状態で図4に示す。すなわち、本実施形態におけるトルクコンバータ11は、ポンプインペラ30を含む入力側回転要素11Cと、ポンプインペラ30と対向し、ブレード31およびこれを保持するタービンシェル32を具えたタービンランナ33を含む第1出力側回転要素11Dと、タービンハブ34を含む第2出力側回転要素11Bと、この第2出力側回転要素11Bのタービンハブ34および第1出力側回転要素11Dのタービンシェル32に跨がって配されるダンパ11Eと、第1出力側回転要素11Dと第2出力側回転要素11Bとの相対回転を規制するストッパ11Fと、タービンシェル32にリベット35を介して一体的に連結されたロックアップピストン36を含むロックアップクラッチ11Aと、このロックアップクラッチ11Aを入力側回転要素11Cに対して係合させるための加圧作動液が供給される係合側液室11Gと、ロックアップクラッチ11Aを入力側回転要素11Cに対して係合解除させるための加圧作動液が供給される係合解除側液室11Hとを有する。このトルクコンバータ11は、ロックアップクラッチ11Aを作動させない状態では入力側回転要素11Cから第1出力側回転要素11Dに流体、つまり作動液であるCVT油を介して動力を伝達し、さらにこの第1出力側回転要素11Dからダンパ11Eを介して第2出力側回転要素11Bへと動力を伝達する。
【0040】
液圧制御回路20は、係合側液室11Gと係合解除側液室11Hとに対する圧油の選択的給排を行うことでロックアップクラッチ11Aの係合および係合解除を行う。
【0041】
本実施形態ではリベット35を用いてタービンシェル32とロックアップピストン36とを連結しており、このリベット35を境にして係合側液室11Gの内周側と外周側とが仕切られた状態となる。このため、特にエンジン10の高回転時に発生する遠心力によって係合側液室11Gの外周側と内周側とで作動液の圧力分布が不均一となり、ロックアップピストン36を円滑に係合状態に移行させることが困難となる可能性がある。そこで、本実施形態では円周方向に隣接するリベット35の間に位置するタービンシェル32とロックアップピストン36との対向面に臨む放射状の連通溝37をプレス加工などによってロックアップピストン36に形成している。このような連通溝37を形成することにより、係合側液室11Gの内周側と外周側との間で作動液の流動が円滑に行われ、作動液の圧力分布をより均一化させてロックアップピストン36を円滑に係合状態に移行させることができる。これらの連通溝37は、タービンシェル32側に形成することも可能である。
【0042】
また、本実施形態ではタービンシェル32のポンプインペラ30と対向する面にリベット35の頭部38が突出した状態となっているため、このリベット35の頭部38に面取り38aを施してある。これにより、タービンシェル32に沿って流動する作動液がリベット35の頭部38にぶつかっても作動液の流れがそれほど乱れず、結果としてこのトルクコンバータ11のトルク伝達効率の低下を最小限に抑えることができる。このような観点から、リベットの頭部の先端面がタービンシェル32の内周面とほぼ同一面となるように、タービンシェル32のリベット35が取り付けられる部分に窪みを形成することも有効であり、その一例を図5に抽出して示す。この図5に示す実施形態におけるタービンシェル32にはリベット35の頭部38を収容するような窪み32aが形成されており、これに伴ってロックアップピストン36にもタービンシェル32の窪み32aに対応した窪み36aが形成されている。つまり、この実施形態においては図2に示す実施形態のものと比較すると、全体としてリベット35の取り付け部分が右側、つまり係合解除側液室11Hに向けてずれた状態となっている。
【0043】
上述したポンプインペラ30は、ブレード39と、このブレード39を内側に取り付けた環状のポンプシェル40とを有する。入力側回転要素11Cは、このポンプインペラ30以外に、外周縁部にてポンプシェル40が接合され、エンジン10のクランク軸23に連結された駆動板41がねじ止めされる円板状のフロントカバー42と、ポンプシェル40の内周縁部に外周縁部が接合されるエンドハブ43などをさらに含んでいる。
【0044】
なお、このトルクコンバータ11の入力側回転要素11Cのエンドハブ43には、液圧制御回路20に高圧の圧油を供給すると共にトルクコンバータ11や前後進切換装置12,CVT13などを潤滑するための油ポンプ(図1参照)44が付設されている。
【0045】
第2出力側回転要素11Bには、前後進切換装置12の入力軸45が連結される。本実施形態においてはタービンハブ34の内周面に雌スプライン34aを形成し、ここに前後進切換装置12の入力軸45の外周面に形成した雄スプライン45aが嵌合されている。この第2出力側回転要素11Bのタービンハブ34のボス部34bの内周面にはオイルシール46が圧入され、ボス部34bの内周面と前後進切換装置12の入力軸45の軸端部の外周面との間の隙間をシールしている。また、このボス部34bのフロントカバー42側の端部には、トルクコンバータ11の図示しない回転軸線と平行な方向(図2中、左右方向)に沿ったタービンハブ34の変位を規制するスラスト受け部材47が嵌め込まれている。フロントカバー42と対向するスラスト受け部材47の端面には、作動液の通過を許容する連通路47aが画成されている。
【0046】
ダンパ11Eは、タービンハブ34とタービンシェル32との相対回転に伴って弾性変形する複数(図示例では5つ)のコイルばね48と、タービンシェル32に形成されてコイルばね48の周方向端面に円板状の座金49を介して当接する駆動突起部32bと、タービンハブ34の外周縁部から突出するように形成されると共にコイルばね48の周方向端面の中心部を横切るように延在し、上述した座金49を介してこれに当接する被駆動突起部34cとを含み、タービンシェル32の駆動突起部32bがこのタービンハブ34の被駆動突起部34cを径方向内側と径方向外側とから挟むように屈曲し、ロックアップピストン36側で180度折れ曲がった状態となっている。つまり、コイルばね48は、そのトルクコンバータ11の径方向内側がタービンハブ34の外周部に保持された状態で、タービンシェル32の駆動突起部32bとタービンハブ34の被駆動突起部34cとの間にそれぞれ介装されている。
【0047】
第1出力側回転要素11Dの一部を構成するタービンシェル32の径方向内側端部には、そのブレード31よりも径方向内側に形成され、かつ上述したリベット35によるタービンシェル32とロックアップピストン36との連結部分よりも径方向内側に位置し、上述したコイルばね48をトルクコンバータ11の回転軸線と平行な方向に対して保持するための複数(図示例では5つ)のダンパ保持部32cが形成されている。コイルばね48の外周に沿ってこれを囲むように湾曲するダンパ保持部32cは、上述した駆動突起部32bと交互にタービンシェル32の径方向内側端部に周方向に沿って一定間隔にて形成され、タービンシェル32の剛性向上に寄与している。
【0048】
これらタービンシェル32のダンパ保持部32cと対向する同様なダンパ保持部36bがロックアップピストン36にも形成されており、個々のコイルばね48はトルクコンバータ11の回転軸線と平行な方向に対向する各対のダンパ保持部32c,36bに挟まれた状態となっている。これにより、タービンシェル32とタービンハブ34との相対回転によって生ずるコイルばね48の圧縮変形がトルクコンバータ11の回転軸線に対して垂直な面に沿って起こるように、コイルばね48の変形方向を規制することができる。また、コイルばね48が剛性の高いタービンシェル32およびロックアップピストン36のダンパ保持部32c,36bにより保持されているため、ダンパ11Eの強度や作動の安定性がさらに改善され、その性能および耐久性をより一層向上させることができる。しかも、コイルばね48を保持するための専用部品をさらに削減すると共にそのための取り付け部も省略することができる結果、トルクコンバータ11の軸長を従来のものよりもさらに短くすることができる。
【0049】
上述したように、タービンシェル32がリベット35を介してロックアップピストン36に一体的に固定され、ロックアップピストン36の径方向内側端がタービンハブ34のボス部34bに対して軸方向(図2中、左右方向)に摺動自在に嵌合支持されているため、タービンシェル32の径方向内端側を支持するための機構などを省略することが可能となり、ここにダンパ11Eを組み込んでトルクコンバータ11の小形化を企図することができる。
【0050】
ストッパ11Fは、コイルばね48が弾性変形できない状態にまで圧縮を受け、これによって何らかの悪影響が生ずるのを防止するため、タービンシェル32とタービンハブ34との相対回転量を所定範囲に規制するためのものである。本実施形態におけるストッパ11Fは、タービンシェル32のダンパ保持部32cと一体に形成されてその内周端からさらに径方向内側に突出する係止片32dと、タービンハブ34の被駆動突起部34cの周方向両側端に形成された一対の係止端面34dとを有する。これら係止片32dおよび一対の係止端面34dは同一回転面内に位置している。従って、コイルばね48のばね力に抗してタービンシェル32とタービンハブ34とが所定角度以上相対回転すると、係止片32dが一対の係止端面34dの何れか一方に当接し、タービンシェル32とタービンハブ34とのそれ以上の相対回転が阻止される。
【0051】
なお、本発明においてストッパの作動というのは、上述したようにストッパ11Fの係止片32dが一対の係止端面34dの何れか一方に当接し、駆動側であるタービンシェル32と、被駆動側であるタービンハブ34とのそれ以上の相対回転が阻止される状態を意味している。
【0052】
このように、タービンシェル32とタービンハブ34との間に、コイルばね48の弾性変形のみでは吸収し切れないような大きなトルク変動が生ずると、ストッパ11Fの係止片32dと係止端面34dとが当接して衝撃音が発生したり、タービンシェル32とタービンハブ34とが急に一体回転することによって不快なトルク変動が体感される可能性がある。本実施形態では、コイルばね48の弾性変形のみでは吸収し切れないような大きなトルク変動が生ずるような場合、後述するようにエンジン10の駆動トルクTを低減するなどして、上述した不具合を改善するものである。
【0053】
径方向内側端がタービンハブ34のボス部34bに対して軸方向に摺動自在に嵌合されるロックアップピストン36を入力側回転要素11Cに対して一体的に接続し得るロックアップクラッチ11Aは、径方向外側部分がロックアップピストン36の径方向外縁部に噛み合わされ、径方向内側部分がフロントカバー42に近接状態で対向する可動クラッチ板50と、径方向内側端部がフロントカバー42の内側の外周寄りに一体的に接合され、径方向外側端部が可動クラッチ板50とロックアップピストン36との間にこれらと対向するように配される固定クラッチ板51とを有し、可動クラッチ板50の両面および固定クラッチ板51のロックアップピストン36と対向する面には、摩擦板52がそれぞれ接合されている。
【0054】
ロックアップピストン36は、トルクコンバータ11内に介在してロックアップピストン36の両面、つまり係合側液室11Gと係合解除側液室11Hとに負荷する作動液の差圧により、タービンランナ33と共にフロントカバー42との対向方向、つまりトルクコンバータ11の回転軸線と平行な方向に変位可能となっている。具体的には、後述するステータ53の回転が起こらないトルクコンバータ作動領域では、ロックアップピストン36がタービンハブ34側に変位し、ロックアップピストン36とフロントカバー42と間に介在する可動クラッチ板50および固定クラッチ板51の摩擦板52がそれぞれ非接触状態となる。この結果、第1出力側回転要素11Dが入力側回転要素11Cに対して切り離され、作動液を介してトルクが増強された状態で入力側回転要素11Cから第1および第2出力側回転要素11D,11Bへと動力が伝達される。逆に、入力側回転要素11Cおよび第1出力側回転要素11Dの回転速度がほぼ等しくなってステータ53の空転が始まるトルクコンバータ非機能領域では、ロックアップピストン36の両面、つまり係合側液室11Gと係合解除側液室11Hとに負荷する作動液の差圧を操作することにより、ロックアップピストン36をフロントカバー42側に変位させ、ロックアップピストン36とフロントカバー42とを可動クラッチ板50および固定クラッチ板51の摩擦板52を介して密着状態にする。この結果、入力側回転要素11Cと第1出力側回転要素11Dとがロックアップクラッチ11Aを介して一体的に結合し、入力側回転要素11Cの駆動力が第1出力側回転要素11Dからダンパ11Eを介して第2出力側回転要素11Bへと伝達される。
【0055】
本実施形態では、複数枚のクラッチ板50,51をロックアップピストン36とフロントカバー42との間に組み込んで個々の摩擦板52に対する負荷を軽減させているが、比較的出力の小さなエンジン10の場合にはこれらを省略し、フロントカバー42と対向するロックアップピストン36の径方向外側端部をフロントカバー42側に近接させ、その表面に摩擦板を接合した構成を採用することなども当然可能である。
【0056】
さらに、本実施形態におけるトルクコンバータ11は、タービンランナ33とポンプインペラ30との間に介在するステータ53と、このステータ53をタービンランナ33の回転方向と同一方向にのみ回転を許容するワンウェイクラッチ54などを具えている。
【0057】
ワンウェイクラッチ54を介して図示しない変速機ケース側に保持されるステータ53は、入力側回転要素11Cのポンプインペラ30によって第1出力側回転要素11Dのタービンランナ33へと流れ込む作動液を再びポンプインペラ30側に導くためのものであり、これによって周知のトルク増大がなされる。タービンランナ33の回転方向と同方向へのステータ53の回転を許容する図2に示したワンウェイクラッチ54の部分の抽出拡大断面構造を図6に示し、このワンウェイクラッチ54に組み付けられる後述する第1および第2の保持板55,56の部分の外観を図7に示す。すなわち、本実施形態におけるワンウェイクラッチ54は、図示しない変速機ケースの一部を構成する支持筒57の先端部に形成された雄スプライン57aに対して嵌合する雌スプライン58aを内周面に形成した内輪58と、ステータ53の内周面に形成された雌スプライン53aと嵌合する雄スプライン59aを外周面に形成した外輪59と、一対のエンドベアリング60を介してこれら内輪58および外輪59の間に保持されるスプラグ61とを含む。このワンウェイクラッチ54は、これが収容される第1の保持板55と、エンドハブ43側に面する第2の保持板56とに挟持された状態なっており、第2の保持板56の外周面には、外輪59の雄スプライン59aと同一ピッチの歯車状をなす係合突起56aが形成されている。この第2の保持板56と同じ板厚を有する第1の保持板55には、外輪59の雄スプライン59aの歯部が貫通し、かつ第2の保持板56の隣接する係合突起56aの間にそれぞれ位置する歯車状の係合突起55aを画成する切欠部55bが形成されている。同一面で交互に並ぶ第2の保持板56の係合突起56aおよびフランジ状をなす第1の保持板55の係合突起55aは、ステータ53の径方向内側に形成された座ぐり孔53b内に収容され、この座ぐり孔53bに形成された止め輪収容溝53cに嵌め込まれる止め輪62によりステータ53に対して一体的に嵌着された状態となっている。
【0058】
タービンハブ34と第1の保持板55との間およびエンドハブ43と第2の保持板56との間にはそれぞれスラスト軸受63,64が介装されており、エンドハブ43およびタービンハブ34に対するワンウェイクラッチ54の外輪59およびステータ53の相対回転が可能となっている。ワンウェイクラッチ54は、スプラグ61を用いるもの以外に、他の周知のワンウェイクラッチを適宜採用することができる。
【0059】
本実施形態における第1の保持板55には、スプラグ61に連通する複数の潤滑油孔55cが形成されている。同様に、第2の保持板56にもスプラグ61およびこの第2の保持板56とエンドハブ43との間に介在するスラスト軸受64にそれぞれ連通する複数の潤滑油孔56bが形成され、タービンハブ34に形成された潤滑油孔34eと相俟って、これらスラスト軸受63,64およびスプラグ61の潤滑および冷却が確実になされるように配慮している。
【0060】
このようなワンウェイクラッチ54をステータ53に組み付ける場合、外輪59の雄スプライン59aの歯部が第1の保持板55の切欠部55bに嵌まるように、第1の保持板55にワンウェイクラッチ54を収容し、次いで第2の保持板56の係合突起56aが第1の保持板55の隣接する係合突起55aの間、つまり切欠部55bに位置するように、第2の保持板56をワンウェイクラッチ54に重ね合わせてこれらをユニット化した後、ステータ53の雌スプライン53aに対してワンウェイクラッチ54の外輪59の雄スプライン59aが噛み合うように、第1および第2の保持板55,56の係合突起55a,56aの部分をステータ53の座ぐり孔53bに嵌め込み、この状態にて止め輪62を止め輪収容溝53cに嵌め込むことにより、ステータ53に対してワンウェイクラッチ54を組み付けることができる。
【0061】
なお、上述したトルクコンバータ11自体の構成は、本実施形態のものに限定されるものではなく、入力部材であるエンジン10のクランク軸23が連結される入力側回転要素11Cと、出力部材である変速機入力軸28が連結される第2出力側回転要素11Bと、この第2出力側回転要素11Bに取り付けられ、入力側回転要素11Cに対して一体的に係合し得るロックアップクラッチ11Aと、このロックアップクラッチ11Aを入力側回転要素11Cに対して係合させるための圧油が供給される係合側液室11Gと、ロックアップクラッチ11Aを入力側回転要素11Cに対して係合解除させるための圧油が供給される係合解除側液室11Hと、第1出力側回転要素11Dと第2出力側回転要素11Bとの所定量を越える相対回転を機械的に制限するストッパ11Fとを有しているものであればよい。
【0062】
本実施形態における前後進切換装置12は、ダブルピニオン型の遊星歯車装置と一対の油圧式摩擦係合要素とで構成され、エンジン10とCVT13との間の動力伝達を遮断できるクラッチ機能を有する。遊星歯車装置は、トルクコンバータ11のタービンハブ34にスプライン嵌合される入力軸45と一体の太陽歯車65と、この太陽歯車65を囲む回転可能な内歯歯車66と、この内歯歯車66と太陽歯車65との間に組み込まれる一対の遊星歯車67a,67bとを有する。これら一対の遊星歯車67a,67bは相互に噛み合い、内周側に位置する一方が太陽歯車65と噛み合うと共に外周側に位置する他方が内歯歯車66と噛み合う。また、これら一対の遊星歯車67a,67bは前後進切換装置12の出力軸68と一体のキャリア69に対してそれぞれ回転自在に支持され、キャリア69は油圧式摩擦係合要素である直結クラッチ16を介して入力軸45に接続し得るようになっている。内歯歯車66は、油圧式摩擦係合要素である反力ブレーキ17を介して図示しない変速機ケースに対し接続し得るようになっており、これら直結クラッチ16および反力ブレーキ17に対する作動液の給排は、液圧制御回路20を介して行われる。
【0063】
従って、直結クラッチ16が係合状態かつ反力ブレーキ17が係合解除状態になると、前後進切換装置12の入力軸45と出力軸68とが直結クラッチ16を介して一体的に接続し、これらが同方向に一体回転して例えば前進方向の駆動力が変速機入力軸28に伝達される。これに対し、直結クラッチ16が係合解除状態かつ反力ブレーキ17が係合状態になると、入力軸45の太陽歯車65と外周側に位置する遊星歯車67bとが同方向に回転するものの、この遊星歯車67bは固定状態の内歯歯車66と噛み合っているため、キャリア69が入力軸45と逆方向に回転し、例えば後進方向の駆動力が変速機入力軸28に伝達されることとなる。さらに、直結クラッチ16および反力ブレーキ17が共に係合解除状態となると、遊星歯車67a,67bが空転状態となり、入力軸45からの駆動力は出力軸68側へは伝わらず、動力伝達経路が遮断された状態となる。
【0064】
CVT13は、入力軸28に設けられたV溝幅が可変の入力プーリ18と、出力軸14に設けられたV溝幅が可変の出力プーリ19と、これら一対のプーリ18,19の間に巻き掛けられる無端の伝動ベルト70とを具えている。動力伝達は、一対のプーリ18,19と伝動ベルト70との間の摩擦力を介して行われる。入力プーリ18にはその溝幅を変更して変速比を制御するための液圧シリンダ18aが組み込まれ、出力プーリ19に伝動ベルト70に対する挟圧力、つまり伝達トルクを規定するための液圧シリンダ19aが組み込まれている。これら液圧シリンダ18a,19aに対する作動液の給排が制御装置21によって液圧制御回路20を介して行われる。つまり、液圧シリンダ19aにエンジン10の出力に応じた所定の液圧を供給して伝動ベルト70に対する挟圧力を設定し、この状態において液圧シリンダ18aに作動液を供給して入力プーリ18の溝幅を変更し、結果として出力プーリ19の溝幅も同時に変えるようにしている。これによって伝動ベルト70の掛かり径、つまり有効径を変更して変速比、つまり入力軸45の回転速度/出力軸14の回転速度を連続的に変化させることができる。
【0065】
CVT13に対する変速比や挟圧力の調整に関しては、従来から周知の技術をそのまま利用することが可能であり、例えば特開2001−340115号公報や特開2003−343707号公報などに記載されている。
【0066】
本発明の制御ブロックを図8に示す。すなわち、本実施形態の制御装置21は、ロックアップクラッチ11Aが非係合状態となるような運転領域にあるか否かを判定する運転領域判定部71と、タービン駆動トルクTを導出する出力トルク導出部72と、この出力トルク導出部72にて導出されたタービン駆動トルクTが所定範囲内にあるか否かを判定するストッパ作動領域判定部73と、トルクコンバータ11の第2出力側回転要素の回転速度の上昇率(以下、これをタービン加速度と呼称する)ΔNを算出するタービン加速度算出部74と、このタービン加速度算出部74にて算出されたタービン加速度ΔNに基づいてエンジン10の駆動トルクTを一時的に低下させるトルクダウン制御部75と、タービン加速度算出部74にて算出されたタービン加速度ΔNに基づいてCVT13のベルト挟圧力を一時的に高めるベルト挟圧力制御部76と、ダンパ11Eのコイルばね48のばね力に抗してストッパ11Fの係止片32dと係止端面34dとが当接するようなトルク(以下、これをストッパトルクと呼称する)Tを学習補正するストッパトルク学習補正部77とを有する。
【0067】
運転領域判定部71は、車速センサ22と、アクセル開度センサ27とからの検出信号に基づいて予め設定された図9に示す如きマップから、ロックアップクラッチ11Aを非係合状態とするような車両の運転領域にあるか否かを判定する。
【0068】
出力トルク導出部72は、トルクコンバータ11の容量係数Cおよびトルク比tと、クランク角センサ24からの検出信号に基づいて算出されるエンジン回転数Nとから、タービン駆動トルクTを次式によって算出する。
=C×N×t
【0069】
ここで、容量係数Cおよびトルク比tは、クランク角センサ24によって導出されるエンジン回転数Nに対するタービン回転数センサ25によって検出されるタービン回転数Nの割合N/N、つまり速度比eに基づき、予め設定された図10,図11に示す如きマップからそれぞれ読み出される。トルクコンバータ11の容量係数Cおよびトルク比tは、作動液の温度などに応じてさらに補正することも有効であり、タービン駆動トルクTを他の周知の方法によって導出することも当然可能である。
【0070】
ストッパ作動領域判定部73は、タービン駆動トルクTが予め設定されたストッパトルクTを基準として所定のトルク範囲内、具体的にはT±ΔTの範囲内にあるか否かを判定する。この範囲T±ΔTは、ここでエンジン10をトルクダウン制御することにより、ストッパ11Fが作動してしまうような可能性を回避できる範囲であるが、ΔTが可能な限り小さな値であることが好ましいことは言うまでもない。
【0071】
タービン加速度算出部74は、タービン回転数センサ25によって検出される値の変化率、つまりタービン加速度ΔNを算出し、これが所定の基準加速度ΔNR1以上となった場合、ストッパ11Fが作動する可能性があると判断している。
【0072】
本実施形態におけるトルクダウン制御部75は、エンジン10の点火時期を例えば1度ずつ遅角側に制御することにより、エンジン10の駆動トルクTを一時的に低下させ、これによってストッパ11Fの係止片32dと係止端面34dとの衝突を回避するか、あるいはこの衝突エネルギーを緩和する。同様な効果を得るためにエンジン10の図示しない吸気通路内を流れる吸気量を一時的に絞ったり、あるいはディーゼルエンジンなどの圧縮点火内燃機関の場合には燃料噴射量の一時的な減量を行うことも有効である。吸気量を絞る場合には、アクチュエータなどで開閉が制御されるスロットル弁を用いる必要がある。
【0073】
ベルト挟圧力制御部76は、エンジン10のトルクダウンと並行してCVT13の出力プーリ19の液圧シリンダ19aに対する供給液圧を一時的に高め、ストッパ11Fの作動時に伝動ベルト70に滑りが生じて摩耗するのを回避ためのものである。より具体的には変速機入力軸および出力軸回転数センサ29a,29bからの検出信号に基づき、出力プーリ19の液圧シリンダ19aに供給される作動液の液圧をデューティ制御する図示しない電磁弁の制御デューティ率を例えば10%変更する。
【0074】
ストッパトルク学習補正部77は、ストッパ作動領域判定部73にて用いられるストッパトルクTを学習補正することにより、これをより適正な推定値に收束させ、本発明における制御の信頼性をより向上させるようにしている。より具体的には所定時間内にタービン回転数Nが急激に変化した場合、ストッパ11Fの係止片32dと係止端面34dとが当接したと判断し、この時のトルクコンバータ11のタービン駆動トルクTをストッパトルクTとして更新する。
【0075】
このような本実施形態による制御手順を図12のフローチャートを参照して説明すると、S11のステップにて車両がロックアップクラッチ11Aの非係合状態となるような運転領域にあるか否かを判定する。このS11にて車両がロックアップクラッチ11Aの非係合状態となるような運転領域にない、すなわちロックアップクラッチ11Aが係合状態となるような運転領域にあると判断した場合、本発明の制御対象外の状態となるので何もせずにそのまま終了する。
【0076】
S11のステップにて車両がロックアップクラッチ11Aの非係合状態となるような運転領域にあると判断した場合には、S12のステップに移行して出力トルク導出部72にて導出されるトルクコンバータ11のタービン駆動トルクTが所定範囲、つまりT±ΔTの範囲にあるか否かが判定される。ここで、タービン駆動トルクTがストップトルクTを基準として所定範囲外に外れている、つまりストッパ11Fが作動する可能性がないと判断した場合には、本発明の制御対象外の状態となるので何もせずにそのまま終了する。
【0077】
しかしながら、タービン駆動トルクTがストップトルクTの近傍にあると判断した場合には、S13のステップに移行してタービン加速度算出部74にて算出される第2出力側回転要素の回転速度の上昇率、つまりタービン加速度ΔNが予め設定した基準加速度ΔNR1以上であるか否かが判定される。ここで、タービン加速度ΔNが基準加速度ΔNR1よりも小さい、すなわちストッパ11Fが作動してもその衝撃音やトルク変化がほとんど感じられないと判断した場合には、本発明の制御対象外の状態となるので何もせずにそのまま終了する。このように、タービン加速度ΔNが基準加速度ΔNR1よりも小さく、ストッパ11Fが作動したとしても衝撃が少ないと予測される場合には、エンジン10のトルクダウンを行わず、動力性能などを重視する。
【0078】
これに対し、タービン加速度ΔNが基準加速度ΔNR1以上である、すなわちストッパ11F係止片32dと係止端面34dとが当接して衝撃音や不快なトルク変動が感じられる可能性があると判断した場合には、S14のステップに移行してトルクダウン制御部75が点火進角の遅角制御を行い、これによってストッパ11Fの係止片32dと係止端面34dとが衝撃的に当接するのを抑制し、衝撃音や不快なトルク変動を緩和する。
また、これと並行してS15のステップにてベルト挟圧力制御部76が出力プーリ19の液圧シリンダ19aに供給される液圧を高め、伝動ベルト70に対する挟圧力を高め、ストッパ11Fが作動したとしても伝動ベルト70がスリップしてしまうような不具合を未然に防ぐ。
【0079】
一方、S16のステップにてタービン駆動トルクTの変動検出を行い、S17のステップにてストッパ11Fの係止片32dと係止端面34dとが当接したか否かを判定する。S17のステップにてストッパ11Fの係止片32dと係止端面34dとが当接したと判断した場合には、S12のステップにて算出されたタービン駆動トルクTをストップトルクTとし、次回の制御サイクルにてこのストップトルクTの値を採用する。
【0080】
ここで、ストッパトルク学習補正部77にて行われるS16におけるタービン回転数Nの変動検出の手順を図13に示す。まずS21のステップにてタービン回転数Nが所定時間内に急変したか否か、つまりタービン回転数センサ25によって検出される最新のタービン回転数NT(C)とその1回前の制御サイクルにて検出されたタービン回転数N(C−1)との差NT(C)−NT(C−1)が、1制御サイクル単位のタービン回転数Nの平均変化率に対して大きく異なっているか否かを判定する。より具体的には、所定時間をn回の制御サイクルとして表すと、最新のタービン回転数NT(C)とその所定時間前に検出されたタービン回転数NT(C−n)との差NT(C)−NT(C−n)の変化率(NT(C)−NT(C−n))/nに対し、上記NT(C)−NT(C−1)のずれ量が所定値ΔNR2以内であるか否かが判定される。ここで、[(NT(C)−NT(C−n))/n]−(NT(C)−N(C−1))の絶対値が所定値ΔNR2以上である、つまり1回の制御サイクル中にタービン回転数Nが急変していると判断した場合には、S22のステップに移行してカウンタのカウント値Cを1つ繰り上げる。そして、S23のステップに移行してn回前の制御サイクルからのカウンタのカウント値Cが予め設定した値C以上であるか否かが判定される。このカウンタのカウント値Cは、S22のステップにて判定されるタービン回転数Nの急変回数である。
【0081】
S23のステップにてカウンタのカウント値Cが予め設定した値C未満である、つまり未だトルクコンバータ11のタービン駆動トルクTが変動したと判断できない場合には、今回の制御サイクルを終了して次の制御サイクルへと移行するが、S23のステップにてカウンタのカウント値Cが予め設定した値C以上である、つまりトルクコンバータ11のタービン駆動トルクTが変動したと判断できる場合には、S24のステップに移行してタービン回転数Nの変動があったと判断する。
【0082】
S21のステップにて[(NT(C)−NT(C−n))/n]−(NT(C)−NT(C−1))の絶対値が所定値ΔNR2未満である、つまり1制御サイクル中にタービン回転数Nが急変していないと判断した場合には、S22のステップを通過せずにS23のステップへと移行し、n回前の制御サイクルからのカウンタのカウント値Cが予め設定した値C以上であるか否かを再度判定する。
【0083】
このようにして、各制御サイクル毎のタービン回転数Nの急変回数をn回前の制御サイクルからカウントし、これが所定値C以上の場合にはトルクコンバータ11のタービン駆動トルクTの変動があった、つまりストッパ11Fの係止片32dと係止端面34dとが当接したと判断する。これにより、ストッパトルクTをより正確に把握することが可能となる。
【0084】
ストッパ11Fの作動に伴う衝撃トルクの伝達を緩和するだけの場合、前後進切換装置12の係合中の摩擦係合要素の係合力を一時的に低減することによっても対処可能である。同様な観点から、遊星歯車式自動変速機を変速機として用いた場合、上述したエンジン10のトルクダウンに代えてエンジン10からの動力伝達に寄与する少なくとも1つの係合中の油圧式摩擦係合要素に対する係合力を弱めることによって、ストッパ11Fの作動に伴う衝撃トルクの伝達を緩和することでも可能である。
【0085】
なお、本発明はロックアップピストンがタービンハブと一体回転する特開平8−312749号公報に開示されているようなトルクコンバータに対しても利用することができる。また、ロックアップクラッチ11Aを含まないトルクコンバータであっても本発明を適用することが可能であり、トルク増幅機能を持たない流体継手を動力伝達経路の途中に組み込んだものに関しても本発明を適用可能である。さらに、変速機などを介さずに駆動源から差動歯車装置を介して駆動輪に動力を伝達するような型式のものにも本発明を適用することができる。
【図面の簡単な説明】
【0086】
【図1】本発明による動力伝達制御装置をベルト式無段変速機が搭載された車両に組み込んだ一実施形態の概念図である。
【図2】図1に示したトルクコンバータの部分の概略構造を表す断面図である。
【図3】図2に示したトルクコンバータにおけるタービンシェルとタービンハブとダンパの部分の破断正面図である。
【図4】図3に示したタービンシェルとタービンハブとダンパの部分の一部を分解状態で表す立体投影図である。
【図5】図2に示したトルクコンバータにおけるタービンシェルとロックアップピストンとの連結部分の他の実施形態を表す抽出断面図である。
【図6】図2に示したトルクコンバータに組み込まれたワンウェイクラッチの部分の抽出拡大断面図である。
【図7】図6に示したワンウェイクラッチを保持する第1および第2の保持板の部分の外観を表す立体投影図である。
【図8】図1に示した実施形態における制御ブロック図である。
【図9】ロックアップクラッチの係合領域および非係合領域に関する運転領域のマップである。
【図10】トルクコンバータの速度比と容量係数との関係を表すグラフである。
【図11】トルクコンバータの速度比とトルク比との関係を表すグラフである。
【図12】図1に示した動力伝達装置の制御手順を表すフローチャートである。
【図13】図12に示したNT変動検出に関するサブルーチンを表すフローチャートである。
【符号の説明】
【0087】
C 容量係数
e 速度比
t トルク比
エンジン回転数
タービン回転数
ΔNR1 基準変化率
ΔNR2 所定値
ΔN タービン加速度
エンジン駆動トルク
ストッパトルク
タービン駆動トルク
10 エンジン
11 トルクコンバータ
11A ロックアップクラッチ
11B 第2出力側回転要素
11C 入力側回転要素
11D 第1出力側回転要素
11E ダンパ
11F ストッパ
11G 係合側液室
11H 係合解除側液室
12 前後進切換装置
13 CVT
14 出力軸(CVT)
15 出力歯車
16 直結クラッチ
17 反力ブレーキ
18 入力プーリ
18a 液圧シリンダ
19 出力プーリ
19a 液圧シリンダ
20 液圧制御回路
21 制御装置
22 車速センサ
23 クランク軸
24 クランク角センサ
25 タービン回転数センサ
26 シフトポジションセンサ
27 アクセル開度センサ
28 入力軸(CVT)
29a 変速機入力軸回転数センサ
29b 変速機出力軸回転数センサ
30 ポンプインペラ
31 ブレード
32 タービンシェル
32a 窪み
32b 駆動突起部
32c ダンパ保持部
32d 係止片
33 タービンランナ
34 タービンハブ
34a 雌スプライン
34b ボス部
34c 被駆動突起部
34d 係止端面
34e 潤滑油孔
35 リベット
36 ロックアップピストン
36a 窪み
36b ダンパ保持部
37 連通溝
38 頭部
38a 面取り
39 ブレード
40 ポンプシェル
41 駆動板
42 フロントカバー
43 エンドハブ
44 油ポンプ
45 入力軸(前後進切換装置)
45a 雄スプライン
46 オイルシール
47 スラスト受け部材
47a 連通路
48 コイルばね
49 座金
50 可動クラッチ板
51 固定クラッチ板
52 摩擦板
53 ステータ
53a 雌スプライン
53b 座ぐり孔
53c 止め輪収容溝
54 ワンウェイクラッチ
55 第1の保持板
55a 係合突起
55b 切欠部
55c 潤滑油孔
56 第2の保持板
56a 係合突起
56b 潤滑油孔
57 支持筒
57a 雄スプライン
58 内輪
58a 雌スプライン
59 外輪
59a 雄スプライン
60 エンドベアリング
61 スプラグ
62 止め輪
63,64 スラスト軸受
65 太陽歯車
66 内歯歯車
67a,67b 遊星歯車
68 出力軸(前後進切換装置)
69 キャリア
70 伝動ベルト
71 運転領域判定部
72 出力トルク導出部
73 ストッパ作動領域判定部
74 タービン加速度算出部
75 トルクダウン制御部
76 ベルト挟圧力制御部
77 ストッパトルク学習補正部




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013