米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 固定構造物 -> 積水化学工業株式会社

発明の名称 地下貯留槽設計支援装置、地下貯留槽設計支援方法、該設計方法に基づく地下貯留槽設計支援プログラム及び該プログラムを記録したプログラム記録媒体
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−182709(P2007−182709A)
公開日 平成19年7月19日(2007.7.19)
出願番号 特願2006−1723(P2006−1723)
出願日 平成18年1月6日(2006.1.6)
代理人 【識別番号】100075502
【弁理士】
【氏名又は名称】倉内 義朗
発明者 北川 雅彦 / 甲斐 郁代
要約 課題
地下貯留槽の設計に関する知識がない人であっても、設置条件に基づいて、地下貯留槽の概要設計を容易に行うことが可能な地下貯留槽設計支援装置を提供する。

解決手段
雨水等を貯留する空隙を備えた滞水ユニットを、上下に積層すると共に、該積層した滞水ユニットを水平方向に縦横に配列して形成される地下貯留槽が設計支援の対象である地下貯留槽設計支援装置を、情報保持手段1、入力手段2、積層個数演算手段3、槽深さ演算手段4、安全係数演算手段5、設計良否判定手段6、及び、位置関係表示手段7により構成する。
特許請求の範囲
【請求項1】
雨水等を貯留する空隙を備えたサイズが同一の滞水ユニットを、上下に積層すると共に、該積層した滞水ユニットを水平方向に縦横に配列して形成される地下貯留槽が設計支援の対象である地下貯留槽設計支援装置であって、
前記滞水ユニットの縦a、横b、及び、高さcの寸法情報と、空隙率β(1>β>0)とを保持している情報保持手段と、
前記地下貯留槽の計画貯留量Vと、縦方向の前記滞水ユニットの配列個数m、及び、横方向の前記滞水ユニットの配列個数nとが、入力情報として入力される入力手段と、
積層個数演算手段と、を備えると共に、
該積層個数演算手段は、深さ方向の前記滞水ユニットの積層個数をq、INT[f(x)]をf(x)の演算結果の整数部のみの値とすると、前記情報保持手段により保持されている、a、b、c、及び、βと、前記入力手段により入力される、V、m、及び、nとにより、qを、
q=INT[{(V/β)/(a×b×m×n)}/c ]+ 1
で求めることを特徴とする地下貯留槽設計支援装置。
【請求項2】
槽深さ演算手段を備えると共に、
該槽深さ演算手段は、前記地下貯留槽の槽深さをhtとすると、前記情報保持手段により保持されているcと、前記積層個数演算手段により演算されるqとにより、htを、
t=c×q
で求める請求項1記載の地下貯留槽設計支援装置。
【請求項3】
安全係数演算手段を備えると共に、
前記情報保持手段は、前記滞水ユニットの密度γt、及び、雨水の密度γwの情報を保持しており、
前記入力手段により、前記地下貯留槽が設置される場所の地表高さ(海抜)GL、地下水位(海抜)hw、土被(どかぶり)深さh、土砂密度γs、の情報が入力されると共に、
前記安全係数演算手段は、
設計深さをhd、水没深さをHo、貯留水位をHi、土被荷重をPs、滞水ユニットの自重による荷重をPt、地下水位による浮力をUo、貯留水による浮力をUi、前記地下貯留槽に貯留水がなく空の場合にはHi=0、この場合の安全係数をS1、前記地下貯留槽が満水の場合にはHi=ht、この場合の安全係数をS2とすると、
前記情報保持手段により保持されている、β、γt、及び、γwと、
前記槽深さ演算手段により演算されるhtと、
前記入力手段により入力される、GL、hw、h、及び、γsとにより、
d、Ho、Ps、Pt、Uo、Ui、S1、S2を、
d=h+ht
o=hd−(GL−hw)
s=γs×h
t=γt×(1−β)×ht
o=γw×(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γw×Hi×(1−β)
1=(Ps+Pt)/(Uo+Ui) (但し、Hi=0)
2=(Ps+Pt)/(Uo+Ui) (但し、Hi=ht)
で求める請求項2記載の地下貯留槽設計支援装置。
【請求項4】
設計良否判定手段を備えると共に、
該設計良否判定手段は、前記安全係数演算手段により演算されるS1とS2のいずれか小さい方が、予め定められた所定の値より小さい場合は、「設計不良」と判定する請求項3記載の地下貯留槽設計支援装置。
【請求項5】
前記槽深さht、前記地表高さ(海抜)GL、前記地下水位(海抜)hw、前記土被深さh、前記設計深さhd、及び、前記水没深さHoの相互の関係である地下貯留槽高さ方向位置関係をグラフィックで表示する位置関係表示手段を備えると共に、
該位置関係表示手段は、各演算手段による演算が全て終了すると、前記地下貯留槽高さ方向位置関係を表示する請求項3又は4記載の地下貯留槽設計支援装置。
【請求項6】
必要土被演算手段を備えると共に、
前記情報保持手段は、前記滞水ユニットの密度γt、及び、雨水の密度γwの情報を保持しており、
前記入力手段により、前記地下貯留槽が設置される場所の地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、土砂密度γs、安全係数S、の情報が入力されると共に、
前記必要土被演算手段は、
設計深さをhd、水没深さをHo、貯留水位をHi、滞水ユニットの自重による荷重をPt、地下水位による浮力をUo、貯留水による浮力をUi、前記地下貯留槽に貯留水がなく空の場合にはHi=0、この場合の必要土被深さをh1、前記地下貯留槽が満水の場合にはHi=ht、この場合の必要土被深さをh2とすると、
前記情報保持手段により保持されている、β、γt、及び、γwと、
前記槽深さ演算手段により演算されるhtと、
前記入力手段により入力される、GL、hw、h、γs、及び、Sとにより、
d、Ho、Ps、Pt、Uo、Ui、h1、h2を、
d=h+ht
o=hd−(GL−hw)
t=γt×(1−β)×ht
o=γw×(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γw×Hi×(1−β)
1={S×(Uo+Ui) −Pt}/γs (但し、Hi=0)
2={S×(Uo+Ui) −Pt}/γs (但し、Hi=ht)
で求める請求項2記載の地下貯留槽設計支援装置。
【請求項7】
土被深さ良否判定手段を備えると共に、
該土被深さ良否判定手段は、前記入力手段により入力されるhが、前記必要土被演算手段により演算されるh1とh2のいずれか大きい方より小さい場合は、「土被深さ不適切」と判定する請求項6記載の地下貯留槽設計支援装置。
【請求項8】
雨水等を貯留する空隙を備えたサイズが同一の滞水ユニットを、上下に積層すると共に、該積層した滞水ユニットを水平方向に縦横に配列して形成される地下貯留槽が設計支援の対象であり、コンピュータにより実行される地下貯留槽設計支援方法であって、
前記コンピュータは、前記滞水ユニットの縦a、横b、及び、高さcの寸法情報と、空隙率β(1>β>0)とが記憶されている記憶装置を備えており、
前記コンピュータにより実行されるステップであって、
前記地下貯留槽の計画貯留量Vと、縦方向の前記滞水ユニットの配列個数m、及び、横方向の前記滞水ユニットの配列個数nとが、入力情報として入力される入力ステップと、
積層個数演算ステップと、を備えると共に、
該積層個数演算ステップは、深さ方向の前記滞水ユニットの積層個数をq、INT[f(x)]をf(x)の演算結果の整数部のみの値とすると、前記コンピュータの記憶装置に記憶されている、a、b、c、及び、βと、前記入力ステップにより入力される、V、m、及び、nとにより、qを、
q=INT[{(V/β)/(a×b×m×n)}/c ]+ 1
で求めることを特徴とする地下貯留槽設計支援方法。
【請求項9】
槽深さ演算ステップを備えると共に、
該槽深さ演算ステップは、前記地下貯留槽の槽深さをhtとすると、前記コンピュータの記憶装置により保持されているcと、前記積層個数演算ステップにより演算されるqとにより、htを、
t=c×q
で求める請求項8記載の地下貯留槽設計支援方法。
【請求項10】
安全係数演算ステップを備えると共に、
前記コンピュータの記憶装置には、前記滞水ユニットの密度γt、及び、雨水の密度γwの情報が記憶されており、
前記入力ステップにより、前記地下貯留槽が設置される場所の地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、土砂密度γs、の情報が入力されると共に、
前記安全係数演算ステップは、
設計深さをhd、水没深さをHo、貯留水位をHi、土被荷重をPs、滞水ユニットの自重による荷重をPt、地下水位による浮力をUo、貯留水による浮力をUi、前記地下貯留槽に貯留水がなく空の場合にはHi=0、この場合の安全係数をS1、前記地下貯留槽が満水の場合にはHi=ht、この場合の安全係数をS2とすると、
前記コンピュータの記憶装置により記憶されている、β、γt、及び、γwと、
前記槽深さ演算ステップにより演算されるhtと、
前記入力ステップにより入力される、GL、hw、h、及び、γsとにより、
d、Ho、Ps、Pt、Uo、Ui、S1、S2を、
d=h+ht
o=hd−(GL−hw)
s=γs×h
t=γt×(1−β)×ht
o=γw×(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γw×Hi×(1−β)
1=(Ps+Pt)/(Uo+Ui) (但し、Hi=0)
2=(Ps+Pt)/(Uo+Ui) (但し、Hi=ht)
で求める請求項9記載の地下貯留槽設計支援方法。
【請求項11】
設計良否判定ステップを備えると共に、
該設計良否判定ステップは、前記安全係数演算ステップにより演算されるS1とS2のいずれか小さい方が、予め定められた所定の値より小さい場合は、「設計不良」と判定する請求項10記載の地下貯留槽設計支援方法。
【請求項12】
前記コンピュータは、表示装置を備えると共に、
前記槽深さht、前記地表高さ(海抜)GL、前記地下水位(海抜)hw、前記土被深さh、前記設計深さhd、及び、前記水没深さHoの相互の関係である地下貯留槽高さ方向位置関係を、表示装置にグラフィックで表示する位置関係表示ステップを備えており、
該位置関係表示ステップは、各演算ステップによる演算が全て終了すると、前記地下貯留槽高さ方向位置関係を前記表示装置に表示する請求項10又は11記載の地下貯留槽設計支援方法。
【請求項13】
必要土被演算ステップを備えると共に、
前記コンピュータの記憶装置には、前記滞水ユニットの密度γt、及び、雨水の密度γwの情報が記憶されており、
前記入力ステップにより、前記地下貯留槽が設置される場所の地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、土砂密度γs、安全係数S、の情報が入力されると共に、
前記必要土被演算ステップは、
設計深さをhd、水没深さをHo、貯留水位をHi、滞水ユニットの自重による荷重をPt、地下水位による浮力をUo、貯留水による浮力をUi、前記地下貯留槽に貯留水がなく空の場合にはHi=0、この場合の必要土被深さをh1、前記地下貯留槽が満水の場合にはHi=ht、この場合の必要土被深さをh2とすると、
前記コンピュータの記憶装置により記憶されている、β、γt、及び、γwと、
前記槽深さ演算ステップにより演算されるhtと、
前記入力ステップにより入力される、GL、hw、h、γs、及び、Sとにより、
d、Ho、Ps、Pt、Uo、Ui、h1、h2を、
d=h+ht
o=hd−(GL−hw)
t=γt×(1−β)×ht
o=γw×(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γw×Hi×(1−β)
1={S×(Uo+Ui) −Pt}/γs (但し、Hi=0)
2={S×(Uo+Ui) −Pt}/γs (但し、Hi=ht)
で求める請求項9記載の地下貯留槽設計支援方法。
【請求項14】
土被深さ良否判定ステップを備えると共に、
該土被深さ良否判定ステップは、前記入力ステップにより入力されるhが、前記必要土被演算ステップにより演算されるh1とh2のいずれか大きい方より小さい場合は、「土被深さ不適切」と判定する請求項13記載の地下貯留槽設計支援方法。
【請求項15】
請求項8〜請求項14のいずれか1項に記載の地下貯留槽設計支援方法が有する各ステップを備えており、前記コンピュータが実行可能な地下貯留槽設計支援プログラム。
【請求項16】
請求項15に記載の地下貯留槽設計支援プログラムが記録されたプログラム記録媒体。
発明の詳細な説明
【技術分野】
【0001】
本発明は、地下貯留槽設計支援装置、地下貯留槽設計支援方法、該設計方法に基づく地下貯留槽設計支援プログラム及び該プログラムを記録したプログラム記録媒体に関する。
【背景技術】
【0002】
住宅地等では、集中豪雨等により、大量の雨水が滞留する恐れがあり、この雨水によって住居に浸水する恐れもある。そこで、大規模な宅地造成地等では、従来から、造成面積に見合う間隔や規模で調整池を造成している。この調整池は、例えば、地面を1m程度掘下げて雨水等の貯留部を形成し、この貯留部に周囲の住宅地からの排水溝や道路の側溝を接続している。このような調整池は、集中豪雨等に際しては、余分な雨水等を一時貯留することにより、周囲の住宅地への雨水等の滞留や下水の河川への流出、或いは、これらに起因する河川の氾濫等を防止しようとするものである。
【0003】
又、調整池としては、貯留部の周囲を透水シートで形成して、雨水等を徐々に地面に浸透させるように構成した浸透式の貯留部を用いたものもある。このように、貯留部の壁面を防水性シートで形成したり、透水性シートで形成したり、或いは下方を防水性シートで形成し上方を透水性シートで形成したりする等によって、調整池を、貯留施設、浸透施設、或いは、貯留浸透施設として機能させている。
【0004】
上記のような雨水等の地下貯留槽は、さまざまなものが存在するが、一般的には、雨水等を貯留する空隙を備えた滞水ユニットを、上下に積層すると共に、該積層した滞水ユニットを水平方向に縦横に配列して形成されるタイプの地下貯留槽である(例えば、特許文献1参照)。特許文献1記載の地下貯留槽は、複数の容器状部材を縦横かつ上下に配設して、最上部には、被覆手段を施したものである。又、図6及び図7に示すような凹凸状の形状をした滞水ユニットを、図8のように積層して形成した、図9に示すような地下貯留槽も考案されている。
【特許文献1】特公平4−26648号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、滞水ユニットを上下に積層して構成した滞水ユニットを、水平方向に縦横に配列して形成される上述したタイプの地下貯留槽の概要設計は、従来、地下貯留槽の設置条件を基にして、手計算で貯留槽の深さを計算し、貯留槽の埋設状況(貯留槽の深さや土被(どかぶり)深さ等の高さ方向の位置関係)の概略の図を描き、その高さ方向の位置関係から、浮力計算等を行う等して、安全性を確認していた。この場合、必要な計算をそれぞれ手計算し、安全性が確認できるまで、貯留槽の表面の面積を変更したり、土被深さを変更したりしながら、全て手計算により概要設計を行っていた。そのため、間違うことも多かった。
【0006】
又、地下貯留槽の提案の段階では、提案するいくつかのパターンについて、設置条件に基づき概要設計を行い、その内容を提示して説明するケースが多く、この場合は、提案する全てのパターンについて、手計算により概要設計を行う必要があり手間がかかっていた。又、計算を全て手計算で行うので、設計に関する知識が必要であり、特定の設計担当者しか設計することができなかった。又、一部の設置条件が変更になった場合も、再計算を行わなければならず、手間がかかっていた。そのため、設計に関する知識がない人であっても、設置条件に基づいて、地下貯留槽の概要設計を容易に行うことが可能な地下貯留槽設計支援装置が要望されていた。
【0007】
そこで、この発明は、このような状況に対処するためになされたものであって、地下貯留槽の設計に関する知識がない人であっても、設置条件に基づいて、地下貯留槽の概要設計を容易に行うことが可能な地下貯留槽設計支援装置及び、地下貯留槽設計支援方法を提供しようとするものである。
【課題を解決するための手段】
【0008】
まず、本発明の地下貯留槽設計支援装置について説明する。本発明の地下貯留槽設計支援装置は、地下貯留槽を設計支援の対象としている。この地下貯留槽は、雨水等を貯留する空隙を備えたサイズが同一の滞水ユニットを、上下に積層すると共に、この積層した滞水ユニットを水平方向に縦横に配列して形成される。図1は、本発明の地下貯留槽設計支援装置の構成を示したブロック図である。図1において、この地下貯留槽設計支援装置は、基本部分として、情報保持手段1、入力手段2、及び、積層個数演算手段3を備えている。
【0009】
この内、情報保持手段1は、滞水ユニットの縦a、横b、及び、高さcの寸法情報と、空隙率β(1>β>0)とを保持する機能を有している。又、入力手段2は、地下貯留槽の計画貯留量Vと、縦方向の滞水ユニットの配列個数m、及び、横方向の滞水ユニットの配列個数nとを、入力情報として入力する機能を有している。
【0010】
そして、積層個数演算手段3は、深さ方向の滞水ユニットの積層個数をq、INT[f(x)]をf(x)の演算結果の整数部のみの値とすると、情報保持手段1により保持されている、a、b、及び、βと、入力手段2により入力された、V、m、及び、nとにより、qを、
q=INT[{(V/β)/(a×b×m×n)}/c ]+ 1
で求める機能を有している。
【0011】
上記の地下貯留槽設計支援装置が支援対象とする地下貯留槽では、滞水ユニットのサイズ及び構造から、1個の滞水ユニットで貯留される水の量が定まり、この滞水ユニットを積層し、配置して形成される地下貯留槽全体の貯留量は、この1個の滞水ユニットで貯留される水の量の整数倍である。しかし、地下貯留槽の設置条件に基づく計画貯留量Vは、必ずしも、上記の1個の滞水ユニットで貯留できる水の量の整数倍になるとは限らない。
【0012】
そこで、計画貯留量Vから滞水ユニットの積層個数qを求める上記の式では、計画貯留量Vを、滞水ユニットの体積と空隙率との積に水平方向に配設される滞水ユニットの個数を掛けた値で除して、得られる商の少数点部である小数点以下を切り捨て、整数部のみを求め、この整数部に更に1(個)を加えて、積層個数qを求めている。即ち、商の少数点部は、1(個)よりも小さい値であるが、これを削除して代わりに1(個)を加えているので、この演算により得られる滞水ユニットの積層個数qの値は、計画貯留量Vを十分満足する値となる。
【0013】
従って、上記の地下貯留槽設計支援装置によれば、入力手段2により、地下貯留槽の計画貯留量Vと、水平方向における縦方向の滞水ユニットの配列個数m、及び、横方向の滞水ユニットの配列個数nとを入力することで、確実に計画貯留量Vを十分満足する滞水ユニットの積層個数を求めることができる。
【0014】
又、上記の地下貯留槽設計支援装置において、図1に示す槽深さ演算手段4を備えると共に、この槽深さ演算手段4が、地下貯留槽の槽深さをhtとすると、情報保持手段1により保持されているcと、上記の積層個数演算手段3により演算されたqとにより、htを、
t=c×q
で求めるようにするのが理に適っており、妥当である。
【0015】
又、上記の地下貯留槽設計支援装置において、更に、次のようにすることにより、上記の地下貯留槽設計支援装置で地下貯留槽の安全性を計算することができる。即ち、上記の地下貯留槽設計支援装置に、図1に示す安全係数演算手段5を備えると共に、情報保持手段1は、滞水ユニットの密度γtと、雨水の密度γwの情報を保持する。又、入力手段2により、地下貯留槽が設置される場所の地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、土砂密度γs、の情報が入力されるようにする。
【0016】
そして、上記の安全係数演算手段5において、設計深さをhd、水没深さをHo、貯留水位をHi、土被荷重をPs、滞水ユニットの自重による荷重をPt、地下水位による浮力をUo、貯留水による浮力をUi、地下貯留槽に貯留水がなく空の場合にはHi=0、この場合の安全係数をS1、地下貯留槽が満水の場合にはHi=ht、この場合の安全係数をS2とする。
【0017】
そうして、情報保持手段1により保持されている、β、γt、及び、γwと、上記の槽深さ演算手段4により演算されるhtと、入力手段2により入力された、GL、hw、h、及び、γsとにより、hd、Ho、Ps、Pt、Uo、Ui、S1、S2を、
d=h+ht
o=hd−(GL−hw)
s=γs×h
t=γt(1−β)×ht
o=γw(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γwi(1−β)
1=(Ps+Pt)/(Uo+Ui) (但し、Hi=0)
2=(Ps+Pt)/(Uo+Ui) (但し、Hi=ht)
で求めるようにするのである。
【0018】
上記の地下貯留槽設計支援装置では、手計算では複雑な地下貯留槽の安全係数を、地下貯留槽が設置される場所の地表高さGL、地下水位hw、土被深さh、土砂密度γs、の情報を入力手段2により入力することで、容易、且つ、迅速に求めることができる。
【0019】
又、上記の地下貯留槽設計支援装置に、図1に示す設計良否判定手段6を備えるようにしてもよい。この設計良否判定手段6は、上記の安全係数演算手段5により演算されたS1とS2のいずれか小さい方が、予め定められた所定の値より小さい場合は、「設計不良」と判定する手段である。このようにすることにより、入力手段2により入力された入力情報に基づく設計が不良であるか否かを、容易、且つ、迅速に判定することができる。
【0020】
又、上記の地下貯留槽設計支援装置に、図1に示す位置関係表示手段7を備えるのが好ましい。この位置関係表示手段7は、上記の各演算手段による演算が全て終了すると、槽深さht、地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、設計深さhd、及び、水没深さHoの相互の関係である地下貯留槽高さ方向位置関係をグラフィックで表示する手段である。
【0021】
このようにすることにより、入力手段2により入力した入力情報に基づく地下貯留槽高さ方向位置関係を、容易、且つ、迅速に確認することができる。
【0022】
又、上記の地下貯留槽設計支援装置において、次のようにすることにより、上記の地下貯留槽設計支援装置で地下貯留槽の必要土被深さを計算することができる。即ち、上記の地下貯留槽設計支援装置に必要土被演算手段を備えると共に、情報保持手段は、滞水ユニットの密度γt、及び、雨水の密度γwの情報を保持する。又、入力手段により、地下貯留槽が設置される場所の地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、土砂密度γs、安全係数S、の情報が入力されるようにする。
【0023】
そして、上記の必要土被演算手段において、設計深さをhd、水没深さをHo、貯留水位をHi、滞水ユニットの自重による荷重をPt、地下水位による浮力をUo、貯留水による浮力をUi、地下貯留槽に貯留水がなく空の場合にはHi=0、この場合の必要土被深さをh1、地下貯留槽が満水の場合にはHi=ht、この場合の必要土被深さをh2とする。
【0024】
そうして、情報保持手段により保持されている、β、γt、及び、γwと、上記の槽深さ演算手段により演算されるhtと、入力手段により入力された、GL、hw、h、γs、及び、Sとにより、hd、Ho、Ps、Pt、Uo、Ui、h1、h2を、
d=h+ht
o=hd−(GL−hw)
t=γt×(1−β)×ht
o=γw×(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γw×Hi×(1−β)
1={S×(Uo+Ui) −Pt}/γs (但し、Hi=0)
2={S×(Uo+Ui) −Pt}/γs (但し、Hi=ht)
で求めるようにするのである。
【0025】
上記の地下貯留槽設計支援装置では、手計算では複雑な地下貯留槽の必要土被深さを、地下貯留槽が設置される場所の地表高さGL、地下水位hw、土被深さh、土砂密度γs、及び、安全係数Sの情報を上記の入力手段により入力することで、容易、且つ、迅速に求めることができる。
【0026】
又、上記の地下貯留槽設計支援装置に、土被深さ良否判定手段を備えるようにしてもよい。この土被深さ良否判定手段は、入力手段により入力されるhが、必要土被演算手段により演算されるh1とh2のいずれか大きい方より小さい場合は、「土被深さ不適切」と判定する手段である。このようにすることにより、入力手段により入力された土被深さhが、適切か否かを、容易、且つ、迅速に判定することができる。 次に、本発明の地下貯留槽設計支援方法について説明する。本発明の地下貯留槽設計支援方法は、コンピュータにより実行される地下貯留槽設計支援方法であり、上記の本発明の地下貯留槽設計支援装置と同様、上述した地下貯留槽を設計支援の対象としている。
【0027】
上記のコンピュータは、滞水ユニットの縦a、横b、及び、高さcの寸法情報と、空隙率β(1>β>0)とが記憶されている記憶装置を備えている。又、本発明の地下貯留槽設計支援方法は、基本部分として、上記のコンピュータにより実行されるステップである、入力ステップと積層個数演算ステップとを備えている。
【0028】
この内、入力ステップは、地下貯留槽の計画貯留量Vと、縦方向の滞水ユニットの配列個数m、及び、横方向の滞水ユニットの配列個数nとを、入力情報として入力する機能を有している。
【0029】
又、積層個数演算ステップは、深さ方向の滞水ユニットの積層個数をq、INT[f(x)]をf(x)の演算結果の整数部のみの値とすると、コンピュータの記憶装置に記憶されている、a、b、c、及び、βと、入力ステップにより入力された、V、m、及び、nとにより、qを、
q=INT[{(V/β)/(a×b×m×n)}/c ]+ 1
で求める機能を有している。
【0030】
又、上記の地下貯留槽設計支援方法に、槽深さ演算ステップを備えると共に、この槽深さ演算ステップは、地下貯留槽の槽深さをhtとすると、コンピュータの記憶装置により保持されているcと、上記の積層個数演算ステップにより演算されたqとにより、htを、
t=c×q
で求めるようにするのが妥当である。
【0031】
又、上記の地下貯留槽設計支援方法において、更に、次のようにすることにより、上記の地下貯留槽設計支援方法で地下貯留槽の安全性を計算することができる。即ち、上記の地下貯留槽設計支援方法に安全係数演算ステップを備えると共に、コンピュータの記憶装置には、滞水ユニットの密度γtと、雨水の密度γwの情報が記憶される。又、入力ステップにより、地下貯留槽が設置される場所の地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、土砂密度γs、の情報が入力されるようにする。
【0032】
そして、安全係数演算ステップにおいて、設計深さをhd、水没深さをHo、貯留水位をHi、土被荷重をPs、滞水ユニットの自重による荷重をPt、地下水位による浮力をUo、貯留水による浮力をUi、地下貯留槽に貯留水がなく空の場合にはHi=0、この場合の安全係数をS1、地下貯留槽が満水の場合にはHi=ht、この場合の安全係数をS2とする。
【0033】
そうして、コンピュータの記憶装置により記憶されている、β、γt、及び、γwと、上記の槽深さ演算ステップにより演算されたhtと、入力ステップにより入力された、GL、hw、h、及び、γsとにより、hd、Ho、Ps、Pt、Uo、Ui、S1、S2を、
d=h+ht
o=hd−(GL−hw)
s=γs×h
t=γt×(1−β)×ht
o=γw×(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γw×Hi×(1−β)
1=(Ps+Pt)/(Uo+Ui) (但し、Hi=0)
2=(Ps+Pt)/(Uo+Ui) (但し、Hi=ht)
で求めるようにするのである。
【0034】
又、上記の地下貯留槽設計支援方法に、設計良否判定ステップを備えるようにしてもよい。この設計良否判定ステップは、上記の槽深さ演算ステップにより演算されたS1とS2のいずれか小さい方が、予め定められた所定の値より小さい場合は、「設計不良」と判定するステップである。
【0035】
又、上記の地下貯留槽設計支援方法において、コンピュータに表示手段を備えると共に、上記の地下貯留槽設計支援方法に位置関係表示ステップを備えるのが好ましい。この位置関係表示ステップは、上記の各演算ステップによる演算が全て終了すると、槽深さht、地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、設計深さhd、及び、水没深さHoの相互の関係である地下貯留槽高さ方向位置関係を、表示装置に表示するステップである。
【0036】
又、上記の地下貯留槽設計支援方法において、次のようにすることにより、上記の地下貯留槽設計支援方法で地下貯留槽の必要土被深さを計算することができる。即ち、上記の地下貯留槽設計支援方法に必要土被演算ステップを備えると共に、コンピュータの記憶装置には、滞水ユニットの密度γt、及び、雨水の密度γwの情報が記憶される。又、入力ステップにより、地下貯留槽が設置される場所の地表高さ(海抜)GL、地下水位(海抜)hw、土被深さh、土砂密度γs、安全係数S、の情報が入力されるようにする。
【0037】
そして、必要土被演算ステップにおいて、設計深さをhd、水没深さをHo、貯留水位をHi、滞水ユニットの自重による荷重をPt、地下水位による浮力をUo、貯留水による浮力をUi、地下貯留槽に貯留水がなく空の場合にはHi=0、この場合の必要土被深さをh1、地下貯留槽が満水の場合にはHi=ht、この場合の必要土被深さをh2とする。
【0038】
そうして、コンピュータの記憶装置により記憶されている、β、γt、及び、γwと、槽深さ演算ステップにより演算されるhtと、入力ステップにより入力される、GL、hw、h、γs、及び、Sとにより、hd、Ho、Ps、Pt、Uo、Ui、h1、h2を、
d=h+ht
o=hd−(GL−hw)
t=γt×(1−β)×ht
o=γw×(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γw×Hi×(1−β)
1={S×(Uo+Ui) −Pt}/γs (但し、Hi=0)
2={S×(Uo+Ui) −Pt}/γs (但し、Hi=ht)
で求めるようにするのである。
【0039】
又、上記の地下貯留槽設計支援方法に、設計良否判定ステップを備えるようにしてもよい。この設計良否判定ステップは、入力ステップにより入力されるhが、必要土被演算ステップにより演算されるh1とh2のいずれか大きい方より小さい場合は、「土被深さ不適切」と判定する手段である。このようにすることにより、入力ステップにより入力された土被深さhが、適切か否かを、容易、且つ、迅速に判定することができる。 上記の各地下貯留槽設計支援方法によれば、上述した地下貯留槽設計支援装置を使用して得られる作用、効果と同様の作用、効果を得ることができる。
【0040】
本発明の地下貯留槽設計支援プログラムは、上記の各地下貯留槽設計支援方法が有する各ステップを備えたプログラムであって、上記のコンピュータが実行可能なプログラムである。又、本発明のプログラム媒体は、上記の地下貯留槽設計支援プログラムが記録されたプログラム媒体である。
【発明の効果】
【0041】
本発明によれば、地下貯留槽の計画貯留量Vと、水平方向における縦方向の滞水ユニットの配列個数m、及び、横方向の滞水ユニットの配列個数nとを入力することで、確実に計画貯留量Vを十分満足する滞水ユニットの積層個数を求めることができる。
【0042】
又、手計算では複雑な地下貯留槽の安全係数を、地下貯留槽が設置される場所の地表高さGL、地下水位hw、土被深さh、土砂密度γsの情報を入力することで、容易、且つ、迅速に求めることができる。又、入力した入力情報に基づく設計が不良であるか否かを、容易、且つ、迅速に判定することができる。又、設計のやり直しの際にも、容易、且つ、迅速に各演算を行うことができる。又、入力した入力情報に基づく地下貯留槽高さ方向位置関係を、グラフィック表示により、容易、且つ、迅速に確認することができる。
【0043】
又、手計算では複雑な地下貯留槽の必要土被深さを、地下貯留槽が設置される場所の地表高さGL、地下水位hw、土被深さh、土砂密度γs、及び、安全係数Sの情報を上記の入力手段により入力することで、容易、且つ、迅速に求めることができる。又、入力された土被深さhが、適切か否かを、容易、且つ、迅速に判定することができる。
【0044】
従って、地下貯留槽の設計に関する知識がない人であっても、設置条件に基づいて、地下貯留槽の概要設計を容易に行うことができる。
【発明を実施するための最良の形態】
【0045】
以下、本実施の形態における地下貯留槽設計支援装置について、図面を参照しながら詳しく説明する。本実施の形態における地下貯留槽設計支援装置は、地下貯留槽の設計支援を行う装置である。本実施の形態では、設計支援の対象として前述した図9に示す地下貯留槽20を用いる。
【0046】
本実施の形態における地下貯留槽設計支援装置の装置のハードウエアとしては、ワークステーションや高性能のパソコン等が用いられる。これらのワークステーションやパソコン等を用いた地下貯留槽設計支援装置は、一般に、図2に示すような構成である。即ち、本実施の形態における地下貯留槽設計支援装置10は、図2において、CPU11、メモリ12、キーボード13、マウス14、表示装置15、及び、プリンタ16で構成されている。
【0047】
上記の地下貯留槽設計支援装置10のメモリ12には、本実施の形態で必要なOSを含む各種ソフトウエアが搭載されており、本実施の形態における地下貯留槽設計支援装置10の機能は、これらのソフトウエアを実行することにより実現される。即ち、前述した、情報保持手段1、入力手段2、積層個数演算手段3、槽深さ演算手段4、安全係数演算手段5、設計良否判定手段6、位置関係表示手段7、必要土被演算手段、及び、土被深さ良否判定手段は、これらのソフトウエアと上記のハードウエアとの協働で実現される。
【0048】
図9は、本実施の形態における地下貯留槽設計支援装置の設計支援の対象である前述の地下貯留槽20の構造を示した断面図である。図9において、この地下貯留槽20は、地表25から地中26に穴を掘って、基礎コンクリート22を打ち、その上に保護シート23と遮水シート24又は透水シートを敷くと共に、この遮水シート24又は透水シートの上に、図6及び図7に示すサイズ及び形状が同一の滞水ユニット21を、図8に示すように上下に積層し、この積層した滞水ユニット21を水平方向に縦横に配列して貯留槽を形成し、この貯留槽の側面を遮水シート24又は透水シートで覆った後、掘り出した土を埋め戻し、貯留槽を埋設して完成する。
【0049】
尚、図9では遮水シート24を用いているが、このように遮水シート24を用いると、雨水を貯留する機能を備えた地下貯留槽20となる。しかし、透水シートを用いると、雨水透水機能を備えた雨水透水槽となり、或いは、下方を防水性シートで覆い上方を透水性シートで覆うことにより、両者の機能を共に有する雨水貯留透水槽とすることもできる。
【0050】
この地下貯留槽20には、集水桝28に連結されている導水管29が連結される。集水桝28は、道路等に設けられている側溝等と導水管27で連結されており、雨水等が集水桝28に集められる。この雨水等が更に、導水管29を通って、上記の地下貯留槽20に流れ込む仕組みになっている。この地下貯留槽20は、雨水貯留用に使用されるほか、工場排水や農業排水等の貯留用にも使用することができる。
【0051】
図6は、上記の地下貯留槽20に使用されている滞水ユニット21の形状を示したものであり、図6(a)は滞水ユニット21の正面図、図6(b)は側面図、そして、図6(c)は底面図である。又、図7は、滞水ユニット21の底面側から見た斜視図であり、図8は、積層された状態における滞水ユニット21の底面側から見た斜視図である。図8及び図9から分かるように、滞水ユニット21は、向きを一段毎に90度回転させて上下に積層されている。
【0052】
即ち、滞水ユニット21のサイズは、図6に示すように、縦a、横b、及び、高さc1であるが、滞水ユニット21の図6(a)に示す頂部21aは、当該滞水ユニット21の上に、向きを変えて積層されている滞水ユニット21の図6(b)に示す底面21bに設けられた深さc2の凹部21cと嵌合する。又、滞水ユニット21の図6(a)に示す底面21bには、深さc2の凹部21dが設けられており、この凹部21d内には、当該滞水ユニット21の下に、向きを変えて積層されている滞水ユニット21の図6(b)に示す頂部21aが挿入されて、この凹部21dと嵌合する。
【0053】
従って、積層された状態における滞水ユニット21の1個の高さは、図6に示すように、滞水ユニット21の高さc1から、上記の深さc2を減算したcとするのが妥当である。そこで、地下貯留槽設計支援装置10における演算に対する情報としては、滞水ユニット21の1個の高さとしては、cを用いる。
【0054】
次に、上記の地下貯留槽設計支援装置10の動作について説明する。上記の地下貯留槽設計支援装置10は、上述したように、地下貯留槽20の設計支援を行う装置である。この設計支援として、まず、上記の地下貯留槽20を構成する滞水ユニット21に関する情報を、予め、地下貯留槽設計支援装置10のメモリ12にメモリ保持情報として記憶させる。そして、設計の対象である地下貯留槽20の設置条件に基づいて、設計条件を入力情報としてこの地下貯留槽設計支援装置10のキーボード13やマウス14を用いて入力する。すると、この地下貯留槽設計支援装置10が、地下貯留槽の設計に必要な情報である演算情報を演算して出力する。即ち、地下貯留槽設計支援装置10の動作は、メモリ保持情報、及び、入力情報を用いて、演算情報を演算により求めることである。そして、地下貯留槽設計支援装置10が演算した演算情報を用いて、更に、CAD装置等を用いて、地下貯留槽20の設計が進められる。
【0055】
本実施の形態では、上記の地下貯留槽設計支援装置10により行われる設計支援の種類としては、設定された設置条件に基づき設計される地下貯留槽に対する安全係数を最終的に求めて、設計の良否を判定する設計良否判定支援グループと、安全係数を予め設定し、この設定された安全係数に基づく必要土被深さを演算して、設置条件における土被深さが適切か否かを判定する土被深さ適否判定支援グループとにグループ分けしている。
【0056】
まず、設計良否判定支援グループについて説明する。図3は、設計良否判定支援グループに関する上記のメモリ保持情報、入力情報、及び、演算情報を示したテーブルである。図3において、メモリ保持情報には、滞水ユニット21に関する、縦a、横b、高さcの寸法情報、空隙率β、密度γtと、雨水の密度γwとがある。入力情報には、滞水ユニット21に関する、縦方向配列個数m、横方向配列個数nと、地下貯留槽20の計画貯留量Vと、設置場所に関する、地表高さGL、地下水位hw、土被深さh、土砂密度γsとがある。そして、演算情報には、滞水ユニット21の積層個数qと、地下貯留槽20に関する、槽深さht、設計深さhd、水没深さHo、貯留水位Hi、土被荷重Ps、滞水ユニット21の自重による荷重Pt、地下水位による浮力Uo、貯留水による浮力Ui、及び、安全係数S1、S2とがある。
【0057】
この内、メモリ保持情報における滞水ユニット21の空隙率β(1>β>0)とは、滞水ユニット21の全体の体積に対する空隙部分の容積の比率である。
【0058】
又、入力情報における滞水ユニット21の縦方向配列個数mとは、水平方向に縦横に配列される滞水ユニット21の縦方向配列個数であり、同様に、横方向配列個数nとは、横方向配列個数である。又、設置場所の地表高さGLとは、地下貯留槽20が設置される場所の海抜0からの高さであり、地下水位hwとは、地下貯留槽20が設置される場所における海抜0から地下水の表面までの高さであり、土被深さhとは、地表面から地下貯留槽20の上面までの深さである。
【0059】
又、演算情報における地下貯留槽20の槽深さhtとは、地下貯留槽20の上面から底面までの深さであり、設計深さhdとは、地表面から地下貯留槽20の底面までの深さであり、水没深さHoとは、地下貯留槽20が地下水の層に浸っている場合のこの地下水の表面から地下貯留槽20の底面までの深さである。又、貯留水位Hiとは、地下貯留槽20に雨水等を貯留している場合の地下貯留槽20の底面から貯留水の上面までの高さであり、土被荷重Psとは、地表面から地下貯留槽20の上面までの土の重量による荷重であり、滞水ユニット21の自重による荷重Ptとは、滞水ユニット21の重力による荷重である。又、地下水位による浮力Uoとは、地下貯留槽20が設置される場所における地下水が地下貯留槽20に及ぼす浮力であり、貯留水による浮力Uiとは、地下貯留槽20に貯留される水が地下貯留槽20に及ぼす浮力である。そして、安全係数Sとは、地下貯留槽20が、埋設された地中内に安定して存在し得るか否かを表す指標であり、S1は、地下貯留槽20に貯留水がなく空の状態における安全係数であり、S2は、地下貯留槽20が満水の状態における安全係数である。
【0060】
図4は、地下貯留槽設計支援装置10における設計良否判定支援グループに関する動作を示したフローチャートである。この地下貯留槽設計支援装置10の設計良否判定支援グループに関する動作は、入力ステップ(S1)、積層個数演算ステップ(S3)、槽深さ演算ステップ(S4)、安全係数演算ステップ(S5)、設計良否判定ステップ(S6)、及び、位置関係表示ステップ(S7)で構成されている。
【0061】
地下貯留槽設計支援装置10のキーボード13やマウス14により、動作開始が指示されると、まず、入力ステップ(S1)が実行される。入力ステップ(S1)では、図3に記載されている上述した入力情報が、地下貯留槽設計支援装置10のキーボード13やマウス14により入力される。この入力ステップ(S1)は、全ての入力情報の入力が終了するまで継続される(S2)。
【0062】
入力ステップ(S1)が終了すると、積層個数演算ステップ(S3)に移行する。積層個数演算ステップ(S3)では、地下貯留槽20を構成する滞水ユニット21が上下方向に積層される個数である積層個数qを演算する。この演算は、INT[f(x)]をf(x)の演算結果の整数部のみの値とすると、上記のメモリ保持情報及び入力情報に基づき、
q=INT[{(V/β)/(a×b×m×n)}/c ]+ 1
で演算される。上記の演算結果は、地下貯留槽設計支援装置10の表示装置15に表示されると共に、プリンタ16で印刷することもできる。
【0063】
上記の地下貯留槽20では、滞水ユニット21の大きさ及び構造から、1個の滞水ユニット21で貯留できる水の量が定まり、滞水ユニット21を積層し、配置して形成される地下貯留槽20全体の貯留量は、この1個の滞水ユニット21で貯留できる水の量の整数倍である。しかし、地下貯留槽20の設置条件に基づく計画貯留量Vは、必ずしも、1個の滞水ユニット21で貯留できる水の量の整数倍になるとは限らない。
【0064】
そこで、計画貯留量Vから滞水ユニット21の積層個数qを求める上記の式では、計画貯留量Vを、滞水ユニット21の体積と空隙率との積に水平方向に配設される滞水ユニット21の個数を掛けた値で除して、得られる商の少数点部である小数点以下を切り捨て、整数部のみを求め、この整数部に更に1(個)を加えて、積層個数qを求めている。即ち、商の少数点部は、1(個)よりも小さい値であるが、これを削除して代わりに1(個)を加えているので、この演算により得られる滞水ユニット21の積層個数qの値は、計画貯留量Vを十分満足する値となる。
【0065】
積層個数演算ステップ(S3)が終了すると、槽深さ演算ステップ(S4)に移行する。槽深さ演算ステップ(S4)では、地下貯留槽20の槽深さhtを演算する。この演算は、上記の積層個数演算ステップ(S3)で演算された滞水ユニット21の積層個数qと、上記のメモリ保持情報及び入力情報とに基づき、
t=c×q
で演算される。上記の演算結果は、地下貯留槽設計支援装置10の表示装置15に表示されると共に、プリンタ16で印刷することもできる。
【0066】
槽深さ演算ステップ(S4)が終了すると、安全係数演算ステップ(S5)に移行する。安全係数演算ステップ(S5)では、上記の地下貯留槽20の安全係数S1,S2が演算されるが、この安全係数の演算に必要な演算を安全係数の演算の前に行う。これらの演算は、上記の槽深さ演算ステップ(S4)で演算された地下貯留槽20の槽深さhtと、上記のメモリ保持情報及び入力情報とに基づき行われる。以下に、これらの演算の内容について説明する。
【0067】
まず、最初に、下記の演算を行う。
d=h+ht
o=hd−(GL−hw)
s=γs×h
t=γt(1−β)×ht
【0068】
次に、上記で求められたPs、及び、Ptを用いると共に、貯留水位Hi=0として、地下貯留槽20に貯留水がなく空の場合の下記の演算を行って、この場合の安全係数S1を求める。
o=γw(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γwi(1−β)
1=(Ps+Pt)/(Uo+Ui)
【0069】
次に、上記で求められたPs、及び、Ptを用いると共に、貯留水位Hi=槽深さhtとして、地下貯留槽20が満水の場合の下記の演算を行って、この場合の安全係数S2を求める。
o=γw(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γwi(1−β)
2=(Ps+Pt)/(Uo+Ui)
【0070】
上記の演算結果は、地下貯留槽設計支援装置10の表示装置15に表示されると共に、プリンタ16で印刷することもできる。
【0071】
安全係数演算ステップ(S5)が終了すると、設計良否判定ステップ(S6)に移行する。設計良否判定ステップ(S6)では、上記の安全係数演算ステップ(S5)により演算されたS1とS2のいずれか小さい方が、予め定められた所定の値以上の場合は、「設計良」、予め定められた所定の値よりも小さい場合は、「設計不良」と判定する。この結果は、地下貯留槽設計支援装置10の表示装置15に表示される。又、プリンタ16で印刷することもできる。
【0072】
「設計不良」と判定された場合は、設計の対象である地下貯留槽20の設置条件の少なくとも一部を変更することにより設計条件を変更し、この変更された設計条件を入力情報として、上記の各ステップを最初からやり直す。
【0073】
このやり直しの方法としては、入力情報の土被深さhの値を変更して行うのが、一般的である。この方法によれば、地下貯留槽20のサイズを変えずに、地下貯留槽20が埋設される深さを変えるだけでよいので、地下貯留槽20が設置される深さに制約条件がない場合は、便宜である。
【0074】
設計良否判定ステップ(S6)が終了すると、位置関係表示ステップ(S7)に移行する。位置関係表示ステップ(S7)では、槽深さht、地表高さGL、地下水位hw、土被深さh、設計深さhd、及び、水没深さHoの相互の関係である地下貯留槽高さ方向位置関係をグラフィックで、地下貯留槽設計支援装置10の表示装置15に表示する。図5は、この地下貯留槽高さ方向位置関係をグラフィックで表示した例を示したものである。又、この地下貯留槽高さ方向位置関係は、プリンタ16で印刷することもできる。
【0075】
次に、土被深さ適否判定支援グループに関する地下貯留槽設計支援装置10の動作について説明する。図10は、土被深さ適否判定支援グループに関する上記のメモリ保持情報、入力情報、及び、演算情報を示したテーブルである。図10に示すメモリ保持情報、入力情報、及び、演算情報は、上述した設計良否判定支援グループの図3に示すメモリ保持情報、入力情報、及び、演算情報とほとんど同じであり、異なるのは、入力情報として、地下貯留槽に関する安全係数Sが追加された点、及び、演算情報として、地下貯留槽に関する安全係数S1,S2が削除されて、必要土被深さh1,h2が追加された点である。安全係数Sは予め設定される値であり、一般的には、1.2 が用いられる。必要土被深さh1,h2は、予め設定された上記の安全係数Sを用いて演算される値であり、設定された設置条件に基づき設計された地下貯留槽に必要な土被深さである。
【0076】
図11は、地下貯留槽設計支援装置10における土被深さ適否判定支援グループに関する動作を示したフローチャートである。この地下貯留槽設計支援装置10の適否判定支援グループに関する動作は、入力ステップ(S11)、積層個数演算ステップ(S13)、槽深さ演算ステップ(S14)、必要土被深さ演算ステップ(S15)、及び、土被深さ適否判定ステップ(S16)で構成されている。
【0077】
入力ステップ(S11)は、設計良否判定支援グループに関する図3のフローチャートの入力ステップ(S1)とほとんど同じであり、この入力ステップ(S1)と異なる点は、入力情報として、図3のフローチャートの入力ステップ(S1)で入力される入力情報以外に、地下貯留槽に関する安全係数Sを加える点である。この入力ステップ(S11)は、全ての入力情報の入力が終了するまで継続される(S12)。
【0078】
入力ステップ(S11)が終了すると、積層個数演算ステップ(S13)に移行するが、積層個数演算ステップ(S13)は、設計良否判定支援グループに関する図3のフローチャートの積層個数演算ステップ(S3)と全く同じである。又、積層個数演算ステップ(S13)に続いて行われる槽深さ演算ステップ(S14)も、図3のフローチャートの槽深さ演算ステップ(S4)と又く同じである。
【0079】
槽深さ演算ステップ(S14)が終了すると、必要土被深さ演算ステップ(S15)に移行する。必要土被深さ演算ステップ(S15)では、上記の地下貯留槽20の必要土被深さh1,h2が演算されるが、この必要土被深さの演算に必要な演算を必要土被深さの演算の前に行う。これらの演算は、設計良否判定支援グループに関する図3のフローチャートの安全係数演算ステップ(S5)と略同じである。即ち、まず、最初に、下記の演算を行う。
d=h+ht
o=hd−(GL−hw)
t=γt(1−β)×ht
【0080】
次に、上記で求められたPtを用いると共に、貯留水位Hi=0として、地下貯留槽20に貯留水がなく空の場合の下記の演算を行って、この場合の必要土被深さh1を求める。
o=γw(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γwi(1−β)
1={S×(Uo+Ui) −Pt}/γs
【0081】
次に、上記で求められたPtを用いると共に、貯留水位Hi=槽深さhtとして、地下貯留槽20が満水の場合の下記の演算を行って、この場合の必要土被深さh2を求める。
o=γw(Ho−Hi) (但し、Uo<=0の場合は Uo=0)
i=γwi(1−β)
2={S×(Uo+Ui) −Pt}/γs
【0082】
上記の演算結果は、地下貯留槽設計支援装置10の表示装置15に表示されると共に、プリンタ16で印刷することもできる。
【0083】
必要土被深さ演算ステップ(S15)が終了すると、土被深さ適否判定ステップ(S16)に移行する。土被深さ適否判定ステップ(S16)では、上記の設置場所に関する入力情報である土被深さhが、上記の必要土被深さ演算ステップ(S15)により演算されたh1とh2のいずれか大きい方より小さい場合は、「土被深さ不適切」と判定する。この結果は、地下貯留槽設計支援装置10の表示装置15に表示される。又、プリンタ16で印刷することもできる。
【0084】
「土被深さ不適切」と判定された場合は、設計の対象である地下貯留槽20の設置条件の少なくとも一部を変更することにより設計条件を変更し、この変更された設計条件を入力情報として、上記の各ステップを最初からやり直す。
【0085】
このやり直しの方法としては、入力情報の土被深さhの値を変更して行うのが、一般的である。この方法によれば、地下貯留槽20のサイズを変えずに、地下貯留槽20が埋設される深さを変えるだけでよいので、地下貯留槽20が設置される深さに制約条件がない場合は、便宜である。
【0086】
上記の地下貯留槽設計支援装置10によれば、地下貯留槽20の計画貯留量Vと、水平方向における縦方向の滞水ユニット21の配列個数m、及び、横方向の滞水ユニット21の配列個数nとを地下貯留槽設計支援装置10へ入力することで、確実に計画貯留量Vを十分満足する滞水ユニット21の積層個数を求めることができる。
【0087】
又、手計算では複雑な地下貯留槽20の安全係数を、地下貯留槽20が設置される場所の地表高さGL、地下水位hw、土被深さh、土砂密度γsの情報を入力することで、容易、且つ、迅速に求めることができる。又、入力した入力情報に基づく設計が不良であるか否かを、容易、且つ、迅速に判定することができる。又、設計のやり直しの際にも、容易、且つ、迅速に各演算を行うことができる。又、入力した入力情報に基づく地下貯留槽高さ方向位置関係を、グラフィック表示により、容易、且つ、迅速に確認することができる。
【0088】
又、手計算では複雑な地下貯留槽の必要土被深さを、地下貯留槽が設置される場所の地表高さGL、地下水位hw、土被深さh、土砂密度γs、及び、安全係数Sの情報を上記の入力手段により入力することで、容易、且つ、迅速に求めることができる。又、入力された土被深さhが、適切か否かを、容易、且つ、迅速に判定することができる。
【0089】
従って、地下貯留槽の設計に関する知識がない人であっても、設置条件に基づいて、地下貯留槽の概要設計を容易に行うことができる。
【0090】
上記の本実施の形態では、図6及び図7に示すような、サイズ及び形状が同一で積層可能な滞水ユニット21を積重ねた地下貯留槽を、地下貯留槽設計支援装置10の設計支援の対象としている。しかし、設計支援の対象の地下貯留槽に使用される滞水ユニットとしては、このようなものには限られず、サイズが同一で積層可能であれば、滞水ユニットの形状が異なっていてもよく、このような、サイズが同一で形状が異なる複数種類の滞水ユニットを積重ねて形成される地下貯留槽も、本発明における地下貯留槽設計支援装置の設計支援の対象とすることができる。
【図面の簡単な説明】
【0091】
【図1】本発明の地下貯留槽設計支援装置の構成を示したブロック図である。
【図2】本実施の形態における地下貯留槽設計支援装置の構成を示したブロック図である。
【図3】本実施の形態における地下貯留槽設計支援装置の設計良否判定支援グループに関するメモリ保持情報、入力情報、及び、演算情報を示したテーブルである。
【図4】本実施の形態における地下貯留槽設計支援装置の設計良否判定支援グループに関する動作を示したフローチャートである。
【図5】本実施の形態における地下貯留槽設計支援装置で表示される地下貯留槽高さ方向位置関係のグラフィック図である。
【図6】本実施の形態における設計支援の対象である地下貯留槽に使用される滞水ユニットの、(a)は正面図、(b)は側面図、そして、(c)は底面図である。
【図7】本実施の形態における設計支援の対象である地下貯留槽に使用される滞水ユニットの底面側から見た斜視図である。
【図8】本実施の形態における設計支援の対象である地下貯留槽に使用される積層された滞水ユニットの底面側から見た斜視図である。
【図9】本実施の形態における設計支援の対象である地下貯留槽の構造を示した断面図である。
【図10】本実施の形態における地下貯留槽設計支援装置の土被深さ適否判定支援グループに関するメモリ保持情報、入力情報、及び、演算情報を示したテーブルである。
【図11】本実施の形態における地下貯留槽設計支援装置の土被深さ適否判定支援グループに関する動作を示したフローチャートである。
【符号の説明】
【0092】
1 情報保持手段
2 入力手段
3 積層個数演算手段
4 槽深さ演算手段
5 安全係数演算手段
6 設計良否判定手段
7 位置関係表示手段
10 地下貯留槽設計支援装置
11 CPU
12 メモリ
13 キーボード
14 マウス
15 表示装置
16 プリンタ
20 地下貯留槽
21 滞水ユニット
21a 頂部
21b 底面
21c 凹部
21d 凹部
22 基礎コンクリート
23 保護シート
24 遮水シート
25 地表
26 地中
27 導水管
28 集水桝
29 導水管
a 滞水ユニットの縦
b 滞水ユニットの横
c 滞水ユニットの高さ
V 地下貯留槽の計画貯留量
m 縦方向の滞水ユニットの配列個数
n 横方向の滞水ユニットの配列個数
q 滞水ユニットの積層個数
t 地下貯留槽の槽深さ
β 滞水ユニットの空隙率
γt 滞水ユニットの密度
γw 雨水の密度
L 地下貯留槽が設置される場所の地表高さL
w 地下水位
w 土被深さ
γs 土砂密度
d 設計深さ
o 水没深さ
i 貯留水位
s 土被荷重
t 滞水ユニットの自重による荷重
o 地下水位による浮力
i 貯留水による浮力
1 安全係数
2 安全係数




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013