米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 車両 -> 本田技研工業株式会社

発明の名称 車両用操舵装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−22194(P2007−22194A)
公開日 平成19年2月1日(2007.2.1)
出願番号 特願2005−204273(P2005−204273)
出願日 平成17年7月13日(2005.7.13)
代理人 【識別番号】100064908
【弁理士】
【氏名又は名称】志賀 正武
発明者 浅海 壽夫
要約 課題
必要時にバックアップシステムの使用を保障できる車両用操舵装置を提供する。

解決手段
転舵輪を転舵させる力を発生するメイン転舵モータ9とメイン転舵モータ9に電力供給可能なメイン電源20とを有するメインシステム31と、メインシステム31の作動不良時のバックアップを行うサブ転舵モータ14またはサブ電源11を有するバックアップシステム32と、を備え、常時はメインシステム31のみを作動し、エンジン始動時またはエンジン始動直後にバックアップシステム32を一時的に作動して作動確認を行う。
特許請求の範囲
【請求項1】
転舵輪を転舵させる力を発生するメイン転舵モータと該メイン転舵モータに電力供給可能なメイン電源とを有するメインシステムと、
前記メインシステムの作動不良時のバックアップを行うサブ転舵モータまたはサブ電源を有する冗長手段と、
を備え、常時はメインシステムのみを作動し、エンジン始動時またはエンジン始動直後に前記冗長手段を一時的に作動して作動確認を行うことを特徴とする車両用操舵装置。
発明の詳細な説明
【技術分野】
【0001】
この発明は、車両用操舵装置に関するものである。
【背景技術】
【0002】
車両においては、負荷に対して複数の電源(メイン電源とサブ電源)を並列接続して電源の冗長化を図ったシステムが知られている(例えば、特許文献1参照)。
【特許文献1】特開2003−226207号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
ところで、通常はメイン電源から電力供給を行い、メイン電源の不良時にサブ電源から電力供給することができるようにシステムを組んだ場合には、サブ電源の信頼性が非常に重要である。
そこで、この発明は、必要時に冗長手段の使用を保障できる車両用操舵装置を提供するものである。
【課題を解決するための手段】
【0004】
上記課題を解決するために、請求項1に係る発明は、転舵輪を転舵させる力を発生するメイン転舵モータ(例えば、後述する実施例におけるメイン転舵モータ9)と該メイン転舵モータに電力供給可能なメイン電源(例えば、後述する実施例におけるメイン電源20)とを有するメインシステムと、前記メインシステムの作動不良時のバックアップを行うサブ転舵モータ(例えば、後述する実施例におけるサブ転舵モータ14)またはサブ電源(例えば、後述する実施例におけるバックアップバッテリー11)を有する冗長手段と、を備え、常時はメインシステムのみを作動し、エンジン始動時またはエンジン始動直後に前記冗長手段を一時的に作動して作動確認を行うことを特徴とする車両用操舵装置である。
このように構成することにより、エンジン始動時またはエンジン始動直後に冗長手段の作動確認を行うので、この作動確認で冗長手段の正常が確認されると、必要時の冗長手段の使用を保障することができる。また、万が一、冗長手段が不良であるときは、早期発見が可能になる。
【発明の効果】
【0005】
請求項1に係る発明によれば、作動確認で冗長手段の正常が確認されると、必要時の冗長手段の使用を保障することができるので、車両用操舵装置の信頼性が向上する。また、冗長手段の不良を早期に発見することができるので、早期に適切な対応を取ることができる。
【発明を実施するための最良の形態】
【0006】
[実施例1]
初めに、この発明に係る車両用操舵装置の実施例1を図1から図4の図面を参照して説明する。
この実施例1における車両用操舵装置は、運転者が操作を行う操作部(例えば、ハンドル)と転舵輪を転舵させる転舵部とが機械的に連結されていない所謂ステア・バイ・ワイヤ式の操舵装置(以下、SBWと略す)である。
実施例1のSBWは、転舵輪を転舵させる力を発生する2つの転舵モータ(後述するメイン転舵モータ9とサブ転舵モータ14)が共通のラックに連係していて、メイン転舵モータ9またはサブ転舵モータ14で前記ラックを軸方向に移動させることにより転舵輪を転舵するように構成されている。
【0007】
図1は実施例1における車両の電源系のブロック図である。この図1に示すように、エンジンにより駆動されるオルタネータ2およびレクチファイア(整流器)3からなる14Vの発電機1が、12Vの鉛バッテリーからなるメインバッテリー4とセルモータ5に接続されており、図示しないスタートスイッチをONすることによりメインバッテリー4からセルモータ5に電力を供給してエンジン(図示略)をクランキングすることができ、また、オルタネータ2で発生させた交流をレクチファイア3で直流に整流してメインバッテリー4に充電することができる。なお、この実施例1において、発電機1とメインバッテリー4はメイン電源20を構成する。
また、発電機1とメインバッテリー4は、イグニッションスイッチ6を介して操舵系の電子ユニット、燃料噴射点火(FI/IG)系の電子ユニット51、その他(ワイパー、ヘッドライト等)の電子ユニット52に接続され、それぞれに電力供給を可能にしている。
【0008】
以下、SBWの電子ユニットへの電力供給について詳述する。発電機1とメインバッテリー4は、イグニッションスイッチ6、第1電磁リレー7、SBWメインECU8を介してSBWのメイン転舵モータ9に接続されており、これらは車両用操舵装置におけるメインシステム31を構成している。第1電磁リレー7はコイルへの通電によりONとなって、発電機1あるいはメインバッテリー4からSBWメインECU8に電力を供給する。
【0009】
また、発電機1とメインバッテリー4は、前記イグニッションスイッチ6、DC/DCコンバータ10を介してリチウムイオンバッテリーからなる12Vのバックアップバッテリー(サブ電源)11に接続され、バックアップバッテリー11は、第2電磁リレー12、SBWサブECU13を介してSBWのサブ転舵モータ14に接続されている。DC/DCコンバータ10、バックアップバッテリー11、SBWサブECU13、サブ転舵モータ14は、車両用操舵装置におけるバックアップシステム(冗長手段)32を構成している。
【0010】
DC/DCコンバータ10は昇圧回路10aと昇圧回路10aから出力される電流を検出する電流検出器10bとを備えており、DC/DCコンバータ10を作動させることによって、発電機1またはメインバッテリー4からバックアップバッテリー11に充電することができる。但し、この車両用操舵装置では、メインバッテリー4とバックアップバッテリー11がいずれも12Vであるので、DC/DCコンバータ10は通常、1次側電圧と2次側電圧が共に12Vで同一に設定される。
このようにバックアップバッテリー11への充電をDC/DCコンバータ10を介して行うので、DC/DCコンバータ10の作動/停止を制御することによりバックアップバッテリー11の充電/充電停止を制御することができ、過電流や逆流を防止することもできる。また、メイン電源20の電圧が低いときにも、DC/DCコンバータ10で昇圧してバックアップバッテリー11を12Vで充電することが可能になる。
第2電磁リレー12はコイルへの通電によりONとなって、バックアップバッテリー11からSBWサブECU13に電力を供給する。
【0011】
また、この車両用操舵装置は、バックアップバッテリー11に入力される電流を検出する充電電流検出器16と、バックアップバッテリー11から出力される電流を検出する放電電流検出器17を備えており、充電電流検出器16と放電電流検出器17は検出した電流値に応じた電気信号をバッテリーECU(BATT ECU)30に出力する。
【0012】
バッテリーECU30はDC/DCコンバータ10の作動/停止を制御し、SBWメインECU8はSBWへの操舵入力等に応じて第1電磁リレー7のON/OFFを制御し、SBWサブECU13はSBWへの操舵入力等に応じて第2電磁リレー12のON/OFFを制御する。なお、バッテリーECU30は発電機1とメインバッテリー4とバックアップバッテリー11に並列接続されており、これらいずれの電源からもバッテリーECU30を動作するために必要な電力を供給可能にしている。
バッテリーECU30とSBWメインECU8とSBWサブECU13は、相互に必要なデータを通信可能に接続されていて、協調制御が可能になっている。
【0013】
このように構成された実施例1のSBWでは、通常は、第1電磁リレー7がON、第2電磁リレー12がOFFに制御され、メインシステム31を作動させてメイン転舵モータ9だけで転舵し、バックアップシステム32のサブ転舵モータ14は作動させない。このとき、SBWメインECU8は、発電機1またはメインバッテリー4から電力を供給され、運転者によってハンドル(図示略)に加えられる操舵入力に応じてメイン転舵モータ9に流す電流を制御する。
【0014】
そして、メイン電源20の電圧低下またはメイン転舵モータ9の故障などメインシステム31に作動不良が生じたときに、バックアップシステム32のバックアップバッテリー11からSBWサブECU13に電力を供給し、サブ転舵モータ14を作動してメインシステム31をバックアップする。つまり、メイン転舵モータ9の出力不足を補うためサブ転舵モータ14をメインモータ9とともに作動して転舵する。このときには、第1電磁リレー7と第2電磁リレー12がともにONに制御され、SBWメインECU8には発電機1またはメインバッテリー4から電力が供給され、SBWサブECU13にはバックアップバッテリー11から電力が供給される。
【0015】
また、この実施例1におけるSBWでは、バックアップシステム32が正常に作動するか否かの作動確認をエンジン始動時に実施する。
以下、バックアップシステム32の作動確認処理について、図2〜図4のフローチャートに従って説明する。
図2に示すフローチャートはバックアップシステム作動確認処理ルーチン(以下、作動確認処理ルーチンと略す)を示し、この作動確認処理ルーチンはバッテリーECU30によって一定時間毎に実行される。
【0016】
まず、ステップS101において、エンジン作動中か否かを判定する。ステップS101における判定結果が「YES」(エンジン作動中)である場合はステップS102に進み、エンジン始動後タイマーT0のカウントアップを開始する。
次に、ステップS103に進み、エンジン始動後タイマーT0のカウント値が予め設定した所定値T0Aよりも小さいか否か、すなわちエンジン始動直後か否かを判定する。
ステップS103における判定結果が「YES」(T0<T0A、つまりエンジン始動直後)である場合は、ステップS104に進み、放電チェック正常フラグF_dischaが「1」か否かを判定する。
【0017】
ステップS104における判定結果が「NO」(F_discha≠1)である場合は、バックアップバッテリー11の放電チェック正常が未確認であるので、ステップS105に進み、車速やブレーキペダル信号から車両が停車中か否かを判定する。
ステップS105における判定結果が「YES」(停車中)である場合は、ステップS106に進み、バックアップバッテリー11の放電チェックを実行してリターンする。
ステップS105における判定結果が「NO」(走行中)である場合は、ステップS107に進み、放電チェック実行中フラグF_dischastが「1」か否かを判定する。
ステップS107における判定結果が「YES」(F_dischast=1、つまり放電チェック実行中)である場合は、ステップS108に進み、車速が所定車速以下の極低速か否かを判定する。
ステップS108における判定結果が「YES」(極低速)である場合は、ステップS106に進み、バックアップバッテリー11の放電チェックを継続してリターンする。
【0018】
ステップS108における判定結果が「NO」(極低速ではない)である場合は、バックアップバッテリー11の放電チェックを直ちに中止し、リターンする。
また、ステップS107における判定結果が「NO」(F_dischast≠1、つまり放電チェック実行中でない)である場合、および、ステップS103における判定結果が「NO」(T0≧T0A、つまりエンジン始動直後でない)である場合も、リターンする。
つまり、バックアップバッテリー11の放電チェックは、エンジン始動直後であって、車両が停車中かあるいは走行中でも極低速のときに限って実行する。走行中は極低速以外での放電チェックを禁止することで、操舵の車両安定性を確保することができる。
【0019】
一方、ステップS104における判定結果が「YES」(F_discha=1)である場合は、バックアップバッテリー11の放電チェックの結果が正常であるので、ステップS109に進み、充電チェック正常フラグF_chaが「1」か否かを判定する。
ステップS109における判定結果が「NO」(F_cha≠1)である場合は、バックアップバッテリー11の放電チェック正常が未確認であるので、ステップS110に進み、バックアップバッテリー11の充電チェックを実行してリターンする。
ステップS109における判定結果が「YES」(F_cha=1)である場合は、バックアップバッテリー11の充電チェックの結果が正常であるので、バックアップバッテリー11の充電チェックを終了し、リターンする。
また、ステップS101における判定結果が「NO」(エンジン停止中)である場合は、ステップS111に進み、エンジン始動後タイマーT0をリセット(T0=0)してリターンする。
【0020】
図2の作動確認処理ルーチンのステップS106において実行するバックアップバッテリー11の放電チェック処理を、図3のフローチャートに従って説明する。
放電チェック処理では、まず、ステップS201において、メインバッテリー4とバックアップバッテリー11のイニシャルチェックを行い、メインバッテリー4とバックアップバッテリー11のそれぞれの電圧値が規定値(この実施例1では約12V)以上であれば正常、規定値未満であれば異常と判定する。
ステップS201における判定結果が「YES」(イニシャルチェック正常)である場合は、ステップS202に進み、バックアップバッテリー11の電圧に基づいてバックアップバッテリー11の残容量が所定値以上あるか否かを判定する。
ステップS202における判定結果が「YES」(残容量が所定値以上)である場合は、ステップS203に進み、放電チェック実行中フラグF_dischastを「1」にして、ステップS204に進む。
ステップS204では、DC/DCコンバータ10をOFFにして、バックアップバッテリー11への充電を停止するとともに、第2電磁リレー12をONにしてバックアップバッテリー11とSBWサブECU13を接続する。これにより、バックアップバッテリー11の放電チェック中は、メイン電源20からサブ転舵モータ14に電力が供給されるのを阻止することができ、バックアップバッテリー11だけがサブ転舵モータ14に電力を供給可能となり、バックアップバッテリー11の電気を確実に消費させることができるので、正確な消費を把握することができる。
【0021】
この後、ステップS205に進み、運転者がハンドルに加える操舵トルクTQがほぼゼロ(すなわち、予め設定した所定の微少トルク値以下)か否かを判定する。なお、操舵トルクTQは図示しない操舵トルクセンサで検出する。操舵トルクTQがほぼゼロの場合は、要求転舵トルクはゼロになるので、メイン転舵モータ9とサブ転舵モータ14を同じ大きさの微少トルクで互いに逆方向に回転させて放電チェックを実行し、操舵トルクTQがほぼゼロでない場合は、メイン転舵モータ9とサブ転舵モータ14に要求転舵トルクを分担させ、両転舵モータ9,14を同方向に回転させて放電チェックを実行する。このようにすることにより、操舵フィーリングに悪影響を及ぼさずに放電チェックを実行することができる。
【0022】
ステップS205における判定結果が「YES」(TQ≒0)である場合は、ステップS206に進み、SBWサブECU13は、サブ転舵モータ14に流れる電流を予め設定された微少トルク相当の電流値(以下、電流設定値という)に制御し、且つ、サブ転舵モータ14の回転方向を予め設定した方向に制御する。
次に、ステップS207に進み、SBWメインECU8は、メイン転舵モータ9に流れる電流をサブ転舵モータ14に流れる電流と同じ大きさに制御し、且つ、メイン転舵モータ9の回転方向をサブ転舵モータ14の回転方向と逆方向に制御する。
【0023】
次に、ステップS208に進み、SBWサブECU13で検出されるサブ転舵モータ14の電流値が、ステップS206で設定した電流設定値と同一か否かを判定する。
ステップS208における判定結果が「YES」(電流設定値と同一)である場合は、ステップS209に進み、SBWサブECU13で検出されるサブ転舵モータ14の電流値に基づいて、予め設定した期間tにおけるサブ転舵モータ14への通電電流の累積値SId1を演算する。
次に、ステップS210に進み、放電電流検出器17で検出した電流値に基づいて、前記期間tにおけるバックアップバッテリー11からの放電電流の累積値SId2を演算する。
【0024】
次に、ステップS211に進み、バックアップバッテリー11からの放電電流の累積値SId2とサブ転舵モータ14への通電電流の累積値SId1との偏差を算出し、この偏差が予め設定した閾値Sa以内か否かを判定する。
ステップS211における判定結果が「YES」(Sa以内)である場合は、ステップS212に進み、バックアップバッテリー11の放電系は正常であるとして放電チェック正常フラグF_dischaを「1」にする。
さらに、ステップS213に進み、放電チェック実行中フラグF_dischastを「0」にして、本ルーチンの実行を一旦終了する。
【0025】
ステップS208における判定結果が「NO」(サブ転舵モータ14の電流値が電流設定値と異なる)である場合、および、ステップS211における判定結果が「NO」(SId2とSId1の偏差がSaより大きい)である場合は、ステップS214に進みバックアップバッテリー11の放電系に故障ありと診断する。なお、図3では省略するが、バックアップバッテリー11の放電系に故障ありと診断された場合には、警報灯を点灯するなどの必要な処理を行う。
この後、ステップS215に進んで、放電チェック正常フラグF_dischaを「0」にし、さらに、ステップS213に進み、放電チェック実行中フラグF_dischastを「0」にして、本ルーチンの実行を一旦終了する。
【0026】
一方、ステップS205における判定結果が「NO」(TQ≒0でない)である場合は、ステップS216に進み、操舵トルクTQの検出結果から、転舵アシスト方向を決定する。
次に、ステップS217に進み、操舵トルクTQの絶対値が閾値TQaよりも小さいか否かを判定する。
ステップS217における判定結果が「NO」(閾値TQa以上)である場合は、要求転舵トルクが大きいので通常の転舵処理を優先するため、放電チェックを中止し、ステップS215に進んで放電チェック正常フラグF_dischaを「0」にし、さらに、ステップS213に進み、放電チェック実行中フラグF_dischastを「0」にして、本ルーチンの実行を一旦終了する。
【0027】
ステップS217における判定結果が「YES」(閾値TQaよりも小さい)である場合は、要求転舵トルクが小さく(低出力)、放電チェック可能であるので、ステップS218に進み、SBWサブECU13は、サブ転舵モータ14に流れる電流を予め設定された微少トルク相当の電流値(すなわち、電流設定値)に制御し、且つ、サブ転舵モータ14の回転方向をステップS216で決定した方向に制御する。
次に、ステップS219に進み、SBWメインECU8は、メイン転舵モータ9に流れる電流を、操舵角等に基づく目標転舵角と実転舵角との偏差に基づいて算出した要求転舵トルクからサブ転舵モータ14が分担する微少トルク分を差し引いたトルク分に相当する電流値に制御し、且つ、メイン転舵モータ9の回転方向をサブ転舵モータ14の回転方向と同一方向に制御する。つまり、メイン転舵モータ9とサブ転舵モータ14を併用して要求転舵トルクを発生させるように制御する。
【0028】
この後、ステップS219からステップS208に進み、SBWサブECU13で検出されるサブ転舵モータ14の電流値が、ステップS218で設定した電流設定値と同一か否かを判定する。この後の処理については、前述と同様であるので詳細説明を省略するが、バックアップバッテリー11からの放電電流の累積値SId2とサブ転舵モータ14への通電電流の累積値SId1との偏差が予め設定した閾値Sa以内である場合は、バックアップバッテリー11の放電系は正常であると診断し、閾値Saより大きい場合は、バックアップバッテリー11の放電系に故障ありと診断する。
【0029】
なお、ステップS201における判定結果が「NO」(イニシャルチェック異常)である場合、および、ステップS202における判定結果が「NO」(バックアップバッテリー11の残容量が所定値未満)である場合は、放電チェックに適さないのでステップS215に進み、放電チェック正常フラグF_dischaを「0」にし、さらに、ステップS213に進み、放電チェック実行中フラグF_dischastを「0」にして、本ルーチンの実行を一旦終了する。以上で、バックアップバッテリー11の放電チェックを終了する。
このように、DC/DCコンバータ10をOFFにし、バックアップバッテリー11への充電を停止してバックアップバッテリー11の放電チェックを行っているので、放電系の故障診断の精度が高く、信頼性が向上する。
【0030】
次に、図2の作動確認処理ルーチンのステップS110において実行するバックアップバッテリー11の充電チェック処理を、図4のフローチャートに従って説明する。
充電チェック処理では、まず、ステップS301において、バックアップバッテリー11が放電中か否か判定する。
ステップS301における判定結果が「NO」(放電していない)である場合は、ステップS302に進み充電チェック開始フラグF_chastを「1」にし、さらにステップS303に進んで、DC/DCコンバータ10をONにしてバックアップバッテリー11の充電を開始する。
次に、ステップS304に進み、バックアップバッテリー11の電圧値を検出し、検出された電圧値からバックアップバッテリー11の残容量が予め設定した規定量に達しているか否か、すなわち、前記規定量まで充電が完了したか否かを判定する。
ステップS304における判定結果が「NO」(規定値未満)である場合は、ステップS305に進み、バックアップバッテリー11の残容量を検出しながら充電を継続する。
【0031】
ステップS304における判定結果が「YES」(規定値以上)である場合は、ステップS306に進み、DC/DCコンバータ10をOFFにしてバックアップバッテリー11の充電を停止する。
次に、ステップS307に進み、ステップS303〜S306の充電期間中におけるDC/DCコンバータ10からの充電電流の累積値SIc1を、DC/DCコンバータ10の電流検出器10bで検出された電流値に基づいて算出する。
次に、ステップS308に進み、ステップS303〜S306の充電期間中におけるバックアップバッテリー11への充電電流の累積値SIc2を、充電電流検出器16で検出された電流値に基づいて算出する。
次に、ステップS309に進み、バックアップバッテリー11への充電電流の累積値SIc2とDC/DCコンバータ10からの充電電流の累積値SIc1との偏差を算出し、この偏差が予め設定した閾値Sb以内か否かを判定する。
ステップS309における判定結果が「YES」(Sb以内)である場合は、ステップS310に進み、DC/DCコンバータ10は正常であるとして充電チェック正常フラグF_chaを「1」にし、本ルーチンの実行を一旦終了する。
【0032】
ステップS309における判定結果が「NO」(SIc2とSIc1の偏差がSbより大きい)である場合は、ステップS311に進みDC/DCコンバータ10が故障であると診断する。なお、図4では省略するが、DC/DCコンバータ10が故障と診断された場合には、警報灯を点灯するなどの必要な処理を行う。
この後、ステップS312に進んで、充電チェック正常フラグF_chaを「0」にして、本ルーチンの実行を一旦終了する。
【0033】
なお、ステップS301における判定結果が「YES」(放電中)である場合は、充電チェックに適さないので、ステップS313に進み充電チェック開始フラグF_chastを「0」にし、さらにステップS314に進んで、DC/DCコンバータ10をOFFにしてバックアップバッテリー11の充電を停止する。
この後、ステップS312に進んで、充電チェック正常フラグF_chaを「0」にして、本ルーチンの実行を一旦終了する。
このように、バックアップバッテリー11が放電していないときにバックアップバッテリー11の充電チェックを行い、DC/DCコンバータ10の故障診断を行っているので、故障診断の精度が高く、信頼性が向上する。
なお、図2に示す作動確認処理から抜けたときには、DC/DCコンバータ10のON/OFFはバックアップバッテリー11の残容量の状態などに応じて制御され、第2電磁リレー12のON/OFFはメインシステム31の状態に応じて制御される。
【0034】
この実施例1の車両用操舵装置によれば、エンジン始動時またはエンジン始動直後にバックアップシステム32の作動確認を行うので、この作動確認でバックアップシステム32の正常が確認されると、必要時のバックアップシステム32の使用を保障することができる。その結果、車両用操舵装置の信頼性が向上する。
また、万が一、バックアップシステム32が不良であるときは早期発見ができるので、バックアップシステム32における不良箇所の修理や交換など適切な対応を迅速に実施することができる。
【0035】
なお、この実施例1では、メインシステム31の作動不良時にバックアップシステム32を作動させているが、それに加えて、例えばメインシステム31が正常に作動する場合であっても、メイン転舵モータ9だけでは出力が不足するときにその不足分を補うためにバックアップシステム32を併用し、サブ転舵モータ14をメインモータ9とともに作動して転舵するようにしてもよい。この場合には、第1電磁リレー7と第2電磁リレー12をともにONに制御し、SBWメインECU8には発電機1またはメインバッテリー4から電力を供給し、SBWサブECU13にはバックアップバッテリー11から電力を供給する。そして、SBWメインECU8とSBWサブECU13は、運転者によってハンドルに加えられる操舵入力に応じてメイン転舵モータ9とサブ転舵モータ14に対する目標電流を設定し、この目標電流に基づいてSBWメインECU8はメイン転舵モータ9に流す電流を制御し、SBWサブECU13はサブ転舵モータ14に流す電流を制御すればよい。
【0036】
[実施例2]
次に、この発明に係る車両用操舵装置の実施例2を図5の図面を参照して説明する。
図5は、実施例2における車両用操舵装置の電源系のブロック図である。実施例2の車両用操舵装置では、イグニッションスイッチ6と第1電磁リレー7とを接続する電力供給線と、第2電磁リレー12とSBWサブECU13とを接続する電力供給線が、第3電磁リレー15を介して接続されている。第3電磁リレー15はコイルへの通電によりONとなって、発電機1あるいはメインバッテリー4からSBWサブECU13に電力を供給する。SBWサブECU13はバックアップバッテリー11の状態に応じて第3電磁リレー15のON/OFFを制御する。その他の構成については実施例1のものと同じであるので、同一態様部分に同一符号を付して説明を省略する。
【0037】
このように構成された実施例2の車両用操舵装置では、例えば、メイン転舵モータ9の故障時にバックアップバッテリー11の温度が所定温度よりも低いとき、あるいは、バックアップバッテリー11の残容量が所定値よりも少ないときなど、バックアップバッテリー11が放電に適さない状態であるときに、第2電磁リレー12をOFF、第3電磁リレー15をONにして、サブ転舵モータ14の電源をバックアップバッテリー11からメイン電源20に変更することができる。このようにすると、バックアップバッテリー11の消費を防止しつつサブ転舵モータ14の作動を確保することができる。この実施例2では、第3電磁リレー15もバックアップシステム32の構成の一部をなす。
【0038】
実施例2の車両用操舵装置に対してバックアップシステム32の作動確認処理を実行する場合には、図3に示す放電チェックルーチンを実行する際に、ステップS204においてDC/DCコンバータ10をOFF、第2電磁リレー12をONするとともに、第3電磁リレー15をOFFにする。これにより、バックアップバッテリー11の放電チェック中は、メイン電源20からサブ転舵モータ14に電力が供給されるのを阻止することができ、バックアップバッテリー11だけがサブ転舵モータ14に電力を供給可能となり、バックアップバッテリー11の電気を確実に消費させることができる。
【図面の簡単な説明】
【0039】
【図1】この発明に係る車両用操舵装置の実施例1における電源系のブロック図である。
【図2】実施例1の車両用操舵装置におけるバックアップシステム作動確認処理を示すフローチャートである。
【図3】実施例1の車両用操舵装置におけるバックアップバッテリー放電チェック処理を示すフローチャートである。
【図4】実施例1の車両用操舵装置におけるバックアップバッテリー充電チェック処理を示すフローチャートである。
【図5】この発明に係る車両用操舵装置の実施例2における電源系のブロック図である。
【符号の説明】
【0040】
9 メイン転舵モータ
11 バックアップバッテリー(サブ電源)
14 サブ転舵モータ
20 メイン電源
31 メインシステム
32 バックアップシステム(冗長手段)




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013