米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 医学 -> コーディス・コーポレイション

発明の名称 内部人工装具
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−252957(P2007−252957A)
公開日 平成19年10月4日(2007.10.4)
出願番号 特願2007−153139(P2007−153139)
出願日 平成19年6月8日(2007.6.8)
代理人 【識別番号】100066474
【弁理士】
【氏名又は名称】田澤 博昭
発明者 チャールズ・ブイ・トモント / ロバート・ジェイ・コットーン・ジュニア / ジョン・エル・バーチ
要約 課題
物理的性質を変えない所定の放射線不透過特性を備えた複合材料内部人工装具を提供する。

解決手段
内部人工装具は生体適合性材料から形成した本体構造物を有し、本体構造物は、24より大きな平均原子番号を有する第一材料と第一材料と異なる第二材料を有する。第一材料は、第一材料と第二材料を組合わせた容量に対し9容量%以下の量で存在する。本体構造物は、入射X線の強度対透過X線の強度の比が1e-2ないし1e-4の範囲になるために効果的な質量吸収係数を有する。
特許請求の範囲
【請求項1】
生体適合性材料からなる本体構造物を有する内部人工装具において、前記本体構造物は、24より大きな平均原子番号を有する第一材料と前記第一材料と異なる第二材料を含み、前記第一材料は前記第一材料と前記第二材料を組み合わせた容量に対し9容量%以下の量で存在し、且つ、前記本体構造物は、入射X線の強度対透過X線の強度の比が1e-2ないし1e-4の範囲になるために効果的な質量吸収係数を有することを特徴とする内部人工装具。
【請求項2】
生体適合性材料からなる本体構造物を有する内部人工装具において、前記本体構造物は、円筒状中心コアと前記コアの周囲に配置した外筒からなるワイヤーの形態であり、前記コアは24より大きな平均原子番号を有する第一材料を有し、前記外筒は第一材料と異なる第二材料を含み、前記第一材料は前記第一材料と前記第二材料を組み合わせた容量に対し9容量%以下の量で存在し、且つ、前記本体構造物は、入射X線の強度対透過X線の強度の比が1e-2ないし1e-4の範囲になるために効果的な質量吸収係数を有することを特徴とする内部人工装具。
発明の詳細な説明
【技術分野】
【0001】
本発明は内部人工装具(器官)に関し、特に、定量的冠動脈血管造影解析を行なう際に干渉が最小のX線蛍光透視法によって検出するために適切なX線撮影コントラストを有する複合材料でできた内部人工装具に関する。
【背景技術】
【0002】
ステントと一般に呼ばれている1種の内部人工装具は、血管内の狭窄あるいは動脈瘤を治療するために血管内に配置あるいは移植される。これらの装具は部分的に閉塞したり、弱くなり、あるいは異常に広くなった血管の患部を強化するために血管系に移植される。ステントも強化のため、また血管内の腫瘍の成長を防止するために尿管や胆管内にうまく移植されている。ステントを移植するための一般的な1つの手順は、バルーンカテーテルの周囲にステントを包んで、例えば、血管の患部にステントを配置し、次にバルーンを膨らませて血管内の所定の位置にステントを固定する。
【0003】
ステントは、製造可能でなければならず、適切な放射線不透過性、生体適応性及びフープ強度、耐疲労性そして耐蝕性のような機械的性質を含む適切な物理的性質を持たなければならない。現在、ステントの多くは、X線蛍光透視法を使用してその製品厚さが容易に検出できないステンレス鋼や他の材料からなっている。ステントは米国特許第5,135,536号に開示されているようにタンタルワイヤーから作られている。しかしながら、タンタルワイヤーは、非常に放射線不透過性があり、従って、非常に明るいX線蛍光透視画像を作り、周囲の組織から生じる得られたX線画像を暗くし、内腔サイズ決定のための定量的冠動脈血管造影技術の使用を妨げる。
【発明の開示】
【発明が解決しようとする課題】
【0004】
その物理的性質を変えずに内部人工装具の放射線不透過性を変えることは現在では困難である。内部人工装具の物理的性質は非常に重要である。幾つかのステントは非常に限定された弾力性を有しており、そのため、ステントは曲がった血管通路での使用には特によく適合しない。例えば、曲がった血管通路に一般に硬い円筒形のステントを使用すると、曲がった通路に沿って張った長さが非常に短いステントが通常必要になる。またそのようなステントは別々に配置されることがあり、それにより手順のやりとりが増す。
【0005】
内部人工装具を構成する以前のやり方は、良好なフープ強度を備えた装具を使用していた。ステントを比較的大きな管内に設け、足の内部のような外力の影響を受けやすい管内に配備する場合、良好なフープ強度は、内部人工装具を潰す傾向がある力に対抗するために重要である。
【0006】
他の内部人工装具はフープ強度が小さいが、ステントを配備した後、管をゆがめるように管に倣わないというより、管の形に倣うように弾力性があり、良好に適応する。高い弾力性のステント装具の不具合の典型は、ステント装具の配備の時点あるいはその後に、ステント装具が変形し、作用するステントの表面積で望ましい均一性が欠けることがあるステント面を示す傾向があるということである。作用するステントの不均一表面積は、ステントが潰れた挿入時の直径からその膨張し移植された際の直径までのステントの膨張時に特に明らかである。膨張後に、時々、このように均一性がないことは、配備のためにステントを取り付けるバルーンの起伏あるいは別の不均一性によって悪化する。
【課題を解決するための手段】
【0007】
本発明は所定の放射線不透過特性を備えた複合材料内部人工装具に関するもので、その特性は複合材料内部人工装具の物理的性質を変えることがない。
一般に本発明は生体適合性材料で形成した本体構造物を有する内部人工装具(器官)に関する。その本体構造物は、24より大きな平均原子番号を有する第一材料と第一材料と異なる第二材料を含む。第一材料は、第一材料と第二材料を組み合わせた容量に対し9容量%以下の量で存在する。本体構造物は、入射X線の強度対透過X線の強度の比が1e-2ないし1e-4の範囲になるために効果的な質量吸収係数を有する。
【0008】
好ましい実施態様では、本体構造物は、細長い円筒状中心コアとそのコアの周囲に配置した細長い外チューブ状部材を有する。第一材料と第二材料の内の1つはコアを含み、残りの1つはチューブ状部材を含む。第一材料はコアを含み、第二材料はチューブ状部材を含むことが好ましい。しかしながら内部人工装具は、第二材料からなるコアを備えた第一材料からなるチューブ状部材で構成することができる。
【0009】
チューブ状部材とコアを備える代わりに、本体構造物は1層あるいはそれ以上の一般に平面層を有してもよく、第一材料と第二材料内の1つがその平面層からなり、他方が別の平面層からなる。本体構造物は、中央層の周囲に配置した少なくとも1つのシースに沿った中央層を含む円筒状チューブの形態でもよい。中央層は第一材料からなり、シースは第二材料からなる。
【0010】
第一材料は、金、白金、タンタル、イリジウム、タングステン及びそれらの合金の1種あるいはそれ以上からなるのが好ましい。第二材料は、コバルト、炭素、マンガン、シリコン、燐、硫黄、クロム、ニッケル、モリブデン、チタン及び鉄あるいはそれらの組合わせを含む合金などのコバルト合金でよい。他の材料は、コバルト、炭素、マンガン、シリコン、クロム、ニッケル、燐、モリブデン、鉄及び硫黄を含む合金のような第二材料に対し使用することができる。
【0011】
幾つかの材料は本発明の内部人工装具に使用するには好ましくない。例えば、多量に存在すると、パラジウム、銅、亜鉛及び鉛は人体に有毒であり、使用できる保護コーティングが必要である。磁性材料あるいは強磁性材料は、過度の量で使用すれば、本発明の内部人工装具での使用には望ましくない。本体が磁性材料あるいは強磁性材料で作られたステントを患者が有していると、磁気共鳴映像法(MRI)の使用により、ステントが人工MRI画像を作り、磁界により変位しあるいは磁界で加熱するために問題になるだろう。これにより、磁性材料あるいは強磁性材料から作られたステントが、MRIスパイラルX線断層撮影(CT)手順が一般に行なわれる脳に使用されることが防止される。
【0012】
チューブ状部材のサイズの選択は特定の用途による所定のX線撮影のコントラストを得るために重要である。チューブ状部材は0.0020インチから0.0150インチの範囲までの外径、より好ましくは0.0040インチから0.0100インチの範囲までの外径を有する。チューブ状部材の外径は0.0050インチから0.0075インチにあるのがさらに好ましい。コアは0.0005インチから0.0030インチの直径がある。
【0013】
本発明は、ステンレス鋼の内部人工装具で観察されるようにあまりに暗いか、タンタルだけからなる内部人工装具の場合のようにあまりに明るいかの蛍光透視サインを有する従来の内部人工装具材料の問題を解消する。本発明の内部人工装具は、必要な物理的性質を悪く変えずに良好なX線撮影のコントラストを得る。X線撮影のコントラストは、入射X線の強度対透過X線の強度の比が1e-2ないし1e-4の範囲になるように質量吸収係数を選択することによって得られる。従って、本発明の内部人工装具はX線蛍光透視時に見るには十分明るいが、内部人工装具を通して周囲の血管や組織を見たり、定量的な冠動脈形成技術を行なうには十分暗い。
【0014】
本発明の内部人工装具は、注文通りのX線撮影のコントラストと物理的性質が望ましいどんな適用にも相応しい。この内部人工装具はその装具が本体に使用されることにより異なった物理的性質と同様に、異なったサイズと形に作ることができる。また内部人工装具は冠動脈ステント、周辺ステント、ステント移植片などを形成するのに有利に使用することができる。本発明の内部人工装具はまた、縫合糸クリップ、大静脈フィルター、心臓弁、ガイドワイヤー及びジョンソン&ジョンソンの介在方式によるPalmaz(パルマツ)ステントなどのチューブ補剛システムを形成するためにも使用できる。
【0015】
本発明の別の実施態様は、基本的な要素の特別な特徴と構造的変形を行なうように考慮されている。可能な変形ばかりか、引き合いに出した特定の実施態様と本発明の様々な特徴と利点が添付図面と関連して以下に続く詳細な説明から良好に理解される。
【発明の効果】
【0016】
本発明によれば、物理的性質を変えない所定の放射線不透過特性を備えた複合材料内部人工装具を提供することができる。
【発明を実施するための最良の形態】
【0017】
さてここで図面を参照する。図1は生体適合性材料を含む本体構造を有する内部人工装具10の一つの形態を示す。本発明の各内部人工装具10は、2つあるいはそれ以上の材料、放射線不透過第一材料及びその第一材料と異なる第二材料を好適に有する組成を有し、その本体構造物にある特性を与える。
【0018】
本体構造物は、ある円筒状中心コア12とその円筒状中心コア12の周囲に配置したチューブ状外筒(シース)14を有する細長いワイヤー部材の形態に好適になっている。円筒状コア12と外筒14は共に、その長さに沿って一般的に均一な横断面積を有する。シース14は内径d1と外径d2を有する。シース14の内径d1は直径d3の円筒状コア12を収容するのに十分なサイズである。本体構造物はさらに、シース14の外側あるいはシース14とコア12の間に半径方向に配置した一般に環状層を有している。また、本体部材はチューブ状シースと円筒状中心コアのない一体円筒状ワイヤーとして1種の複合材料から作ることができる。
【0019】
図2は第一層、第二層18、20を有するラミネート構造物16を有する本発明の内部人工装具10の別の形態を示す。第一層18は厚さがt1で、第二層は厚さがt2である。第一層18と第二層20の間かその外側にさらに層を形成してもよい。
【0020】
図3に示した円筒状ハイポチューブ22は、図2のラミネート構造物16から作ってもよい。図3に示したハイポチューブ形態では、第一層18はチューブ状内層を形成し、第二層20はチューブ状外層を形成する。
【0021】
開口あるいは窓24は円筒状ハイポチューブ22の壁に形成することができる。窓24は複合チューブ22から好適に切り抜かれて、内部人工装具は異なった直径に膨張できる。窓24によって窓と窓の間に弾力のあるプラスチック領域を有するビーム断面が現れ、それによりジョンソンーアンドージョンソン介在方式で開発したパルマツ(Palmaz)によりステント形態と一致する。
【0022】
内部人工装具の配備時と後配備検出時に、X線蛍光透視法あるいは磁気共鳴映像法を使用しながら内部人工装具10の位置を検出することができることは重要である。内部人工装具の本体構造物の材料が初期のX線ビームの強度と違った強度で検出するのに十分な強度の透過X線ビームを吸収する際に、内部人工装具10が検出される。この関係は以下の式で経験的に示される。
【数1】


この式でIx は透過x線ビームが厚さxを透過した後の強度であり、
0 は入射x線ビームの強度であり、
μ/ρは内部人工装具の質量吸収係数であり、
μは一次吸収係数であり、
ρは内部人工装具の密度であり、
xは内部人工装具の厚さあるいは直径である。
式(1)は複合内部人工装具構造物のコア、シース及び複数の層中の各元素と各合金のx線不透過性を決定するために使用する。
【0023】
式(1)で使用した複合内部人工装具10の質量吸収係数は、全体の内部人工装具の各元素成分の質量吸収係数の質量分率を合計することによって決定される。各元素成分の質量吸収係数は、入射X線のX線波長と各元素成分の原子番号に以下のように関係する。
μ/ρ=kλ33 (2)
この式でμ/ρは各元素成分の質量吸収係数であり、
kは定数であり、
λはx線波長であり、
zは各元素成分の原子番号である。
複合内部人工装具の各元素に対し、元素の原子番号とX線蛍光透視法によるX線波長を掛け合わせた元素質量分率を合計することによって、全体の複合内部人工装具の質量吸収係数を決定することができる。
【0024】
X線撮影のコントラストは、ある材料の1つの相互作用領域を透過したX線強度を、その材料の別の相互作用領域を透過したX線強度と比較した差である。X線撮影のコントラストは、内部人工装具を透過したX線ビームと周囲の組織を透過したX線ビームとの間の関係である。内部人工装具のX線撮影のコントラストは、以下のように定義される。
s /Il (3)
この式でIs は内部人工装具を透過したX線ビームの強度であり、
l は組織を透過したX線ビームの強度である。
式(3)で使用した複合内部人工装具10と周囲組織のX線強度は式(1)を使用して計算することができる。組織と骨の間のX線撮影のコントラストは約1に等しい。
【0025】
本発明により、質量吸収係数を制御することによって内部人工装具のX線撮影のコントラストが決定できる。質量吸収係数は使用した複合材料と全体の内部人工装具の厚さあるいは直径、すなわち、d2 あるいはt1 +t2 を選択することによって制御する。異なった物理的性質を各々が有する2つあるいはそれ以上の材料を好適に使用することによって、耐疲労性、耐蝕性、引張り強度、靭性及び生体適合性を含む全体の内部人工装具の物理的性質を変えずに、X線撮影のコントラストを望み通りに調節することができる。これは例えばチューブ状部材とコアを有する構造物を使用することによって、必要な物理的性質に対し必要なチューブ状部材の構造材料の量を維持しながら、コア内のX線不透過材料の量が調節できるためである。
【0026】
質量吸収係数は、好ましい範囲にX線撮影のコントラストを作り出すために注意深く選択しなければならない。内部人工装具の蛍光透視サインが十分に検出できるか、明るいか、また血管壁のX線サインを阻害するX線人工物も生じないように複合構造物を設計することが重要である。言い換えれば、X線不透過材料のX線蛍光透視画像が過度に明るくてもいけない。雑種の成犬と小さな豚を使用する本発明の内部人工装具のX線不透過に関する実験的な研究により、理想的な蛍光透視サインが1e-2ないし1e-4の範囲のX線撮影のコントラストに対応することがわかった。このコントラスト範囲によって、例えば、定量的な血管造影法の測定値を変えずに内部人工装具を検出するための十分な強度が与えられる。
【0027】
図4はX線撮影のコントラスト対図1の形態の外径d2あるいは異なった材料系の図3の形態の部位厚さ(t1+t2)を示す。0.0040インチと0.0100インチとの間のX軸に沿って実線で定義した矩形領域は、所望のX線撮影のコントラストの領域である。この所望のX線撮影のコントラスト領域は、チューブ形態のラミネート層からなるステントと大動脈あるいは大静脈内腔のような大きな径の血管に使用した大径ワイヤーのための理想的な蛍光透視条件に対応する。
【0028】
0.0050インチと0.0075インチの間で図4のX軸に沿った点線で定義した矩形領域は、好ましいX線撮影のコントラストの領域である。この好ましい領域は、ワイヤーからなる冠動脈ステントと周辺ステントに対する理想的な蛍光透視条件に対応する。本明細書の以下の説明では、別に示さない限り、ワイヤーの実施態様は図2と3に示したラミネート実施態様とハイポチューブの実施態様に等しく適用できるものの、図1に示したワイヤーの実施態様を参考にする。
【0029】
望ましいX線撮影のコントラスト領域と好適なX線撮影のコントラスト領域は、共に1e-2ないし1e-4のy軸に沿った所定の必要なX線撮影のコントラスト領域内にある。本発明のX線撮影のコントラスト領域は、膨張時に血管壁に入るステントの場合に特に重要である。再狭窄が発生した後、ステントを介して血管壁を見ることができることは重要である。この理由のため内部人工装具は、X線蛍光透視時に見るのに十分明るいが、見通すには暗いことが必要である。内部人工装具を見通すことができることは、内部人工装具からのX線サインが、周囲の血管と組織をマスクするX線人工物を作らないことを意味する。これによって移植後に、血管内腔サイズの正確な測定が可能になる。1e-2より大きなX線撮影のコントラストでは、内部人工装具を見るためにはあまりに暗い。モントリオールの心臓学研究所で1e-2のX線撮影のコントラストを示すX線画像が、本発明の内部人工装具に関する犬の研究で観察され、リアルタイムビデオでしかもX線フィルムで示された。1e-4より小さなX線撮影のコントラストでは、内部人工装具は周囲の組織と血管壁があまりに明るいので見ることができない。従って、本発明の内部人工装具はle-2ないしle-4の間のX線撮影のコントラストの範囲を有するように構成され、そのためにX線蛍光透視時に内部人工装具を見ることと周囲の血管壁あるいは組織を見ることとの間のバランスをとる。
【0030】
シースあるいは外チューブ14は0.0020インチから0.0150インチまでの範囲の外径を好適に有する。図4の望ましく好適なX線撮影のコントラスト領域を組合わせた領域で示したように、シース14は0.0040インチから0.0100インチまでの範囲の外径d2を有することがより好ましい。図4に好ましい点線領域で示したように、シース14は0.0050インチから0.0075インチまでの範囲の外径d2を有することがさらに好ましい。0.0010インチから0.0025インチまでの範囲のコア直径d3で、すべての用途に対し最適なX線撮影のコントラストが達成される。
【0031】
複合内部人工装具10のコア径とシース径d1、d2及びd3は、内部人工装具10の意図した用途によって変わる。内部人工装具10を、冠動脈ステントを形成するために使用する場合、外径d2は0.0050インチから0.0060インチまでの範囲である。伏在静脈移植片に使用する場合、外径d2は0.0055インチから0.0065インチまでの範囲である。腸骨内腔と胆管内腔での使用、脳での使用、腹部大動脈瘤の場合などの周辺のステントの場合には、外径d2は0.0075インチから0.0100インチまでの範囲である。ラミネート構造16は内部人工装具の適用により変化し、上記外ワイヤー径d2とコア径d3と同じサイズを有する全体のサイズ(t1とt2)を有する。
【0032】
図5はワイヤー径あるいは断面厚さの関数として一次吸収係数を示す。陰影を付けた領域は、0.0040インチから0.0075インチまでの範囲のワイヤー外径d2で望ましい一次吸収係数を示す。
【0033】
以下の表1は平均原子番号、従って1e-2から1e-4までのX線撮影のコントラストを備えた内部人工装具を形成するために使用する元素を示す。
表1
ワイヤー径あるいは断面 平均原子番号
厚さ(インチ)
0.004 63〜71
0.0050 28〜70
0.0075 26〜64
0.0100 24〜27
【0034】
本発明の独特で重要な特性は、必要な物理的性質の幾つかに対し優れた性能を各々が示す多くの材料を使用するその能力である。コアは複合内部人工装具に良好なX線不透過性を与えるように好適に選択され、一方、シースは複合内部人工装具に良好な物理的性質を与えるように好適に選択される。それによって、内部人工装具は、その内部人工装具の物理的性質に不利に作用しないで適切なX線撮影のコントラストを持つように設計される。
【0035】
第一材料は、表1に示したような原子番号(構成元素の)あるいは24〜71の範囲の平均原子番号を有する1種あるいはそれ以上の材料を含む。例えば、第一材料は、金、白金、タンタル、イリジウム、タングステン及びそれらの合金の1種あるいはそれ以上を好適に含有する。好ましい第一材料のタンタルはカボットコーポレーション(Cabot Corporation )から得ることができる。
【0036】
第二材料は第一材料と両立できる化学的性質と物理的性質を有する。第二材料は、コバルト、炭素、マンガン、シリコン、燐、硫黄、クロム、ニッケル、モリブデン、鉄、及びチタンあるいはそれらの全ての組合わせなどのニッケルコバルト合金でよい。第二材料として、コバルト、炭素、マンガン、シリコン、クロム、ニッケル、燐、モリブデン、硫黄及び鉄を含有する合金などの別の材料を使用することができる。
【0037】
第二材料の1つの組成物は、カーペンターテクノロジーコーポレーション(Carpenter Technology Corporation)が供給した304Vとして知られており、以下のような名目的組成(重量%)である。すなわち、炭素:最大0.03、マンガン:最大2.00、シリコン:最大1.00、クロム:18.0〜20.0、ニッケル:8.0〜12.0、燐:最大0.045、硫黄:最大0.03、残りは鉄である。
【0038】
第二材料の別の組成物は、カーペンターテクノロジーコーポレーションが供給した316LVMとして知られており、以下のような名目的組成(重量%)を含有する。すなわち、炭素:最大0.03、マンガン:最大2.00、シリコン:最大1.00、クロム:16.0〜18.0、ニッケル:10.0〜14.0、燐:最大0.045、硫黄:最大0.03、モリブデン:2.0〜3.0、残りは鉄である。
【0039】
第二材料の好ましい組成はMP35N(カーペンターテクノロジーコーポレーションとラトローベスティールカンパニーが供給)として知られており、以下のような名目的組成(重量%)を含有する。すなわち、炭素:最大0.025、マンガン:最大0.15、シリコン:最大0.15、燐:最大0.015、硫黄:最大0.010、クロム:19.0〜21.0、ニッケル:33.0〜37.0、モリブデン:9.0〜10.5、鉄:最大1.0、チタン:最大1.0、残りはコバルトである。
【0040】
本発明の複合本体構造物で、第一材料は、第一材料と第二材料を合わせた容量に対し2〜9容量%の量にある。1つの好ましい複合材料は91容量%のMP35Nと9容量%のTaを有する。別の好ましい複合材料は93容量%のMP35Nと7容量%のTaか、96容量%のMP35Nと4容量%のTaかを有する。これらの材料は、0.0050インチから0.0075インチまでの範囲のワイヤー径で好ましい点線領域内に完全に入るX線撮影のコントラストを示す。
【0041】
別の内部人工装具材料はタンタルのみか白金のみを含有する材料と、67容量%のMP35Nと33容量%のTa(MP35N−33Ta)を有する材料である。これらの材料は、一般に周囲の組織あるいは血管壁が明る過ぎて見ることができないX線蛍光透視サインを有する。
【0042】
ワイヤー径の望ましい領域の下限は図4に0.0040で示してあるが、0.0050インチあるいはそれ以上のワイヤー径が好ましい。0.0050インチ未満のワイヤー径では、内部人工装具が望ましいフープ強度を持たない。100mmHgの最小フープ強度を内部人工装具に対し維持しなければならない。図1に示した形態の内部人工装具はこのフープ強度を満足させるために0.0040インチあるいはそれ以上の直径を有する必要がある。図3に示した形態の内部人工装具は、このフープ強度を満足させるために0.0030インチか0,0020インチの厚さを必要とする。従って、MP35N−33Ta組成物と、高X線不透過材料を含有する別の材料は、図4に示したワイヤー径が0.0050インチ未満で許容できるX線撮影のコントラストを有するが、望ましくない低フープ強度のためにそのような材料から内部人工装具を作ることはできない。
【0043】
パラジウム、MP35Nあるいは304Vの1種のような1種の材料系からなる内部人工装具は図4に示したX線撮影のコントラストが許容できる領域に入るが、これらの材料にはある欠点がある。パラジウムは人体に有毒であり、使用できる保護コーティングが必要であろう。MP35Nか304Vのみからなる内部人工装具だけが約0.0060インチより太いワイヤー径に対し許容できるコントラストを有し、そのため、これらの材料が冠動脈ステントに使用するのが妨げられる。
【0044】
鉄ベースの材料はその量が過剰であれば本発明の内部人工装具には望ましくない。本発明での使用が望ましくないそのような1種の鉄ベース材料は、エルギロイ(Elgiloy )のブランド名を有し、カーペンターテクノロジーコーポレーションから得ることができる。体内のそのような鉄含有ステントはMRIスパイラルCTを患者に実施した場合、加熱し、移動し望ましくない。
【0045】
本発明の内部人工装具は、インディアナ州のFt.WayneのFt.Wayne金属研究プロダクトコーポレーションが行なったような充填剤入り引き抜きチューブ(DFT)法で製造した複合フィラメントを得ることによって作られる。第二材料から作られるチューブは、第一材料から作られたコアワイヤーが挿入でき、そのチューブで半径方向に略中心にある内径を有する。そのチューブの内径と外径及びコアワイヤーの径は使用する材料によって変わる。シース材料の内径と外径及びコア材料の外径は、その製造プロセスの開始時には特殊な開始材料と望ましい容量%のコアにより変化する。チューブとコアワイヤーは長さが少なくとも12フィートでよい。コアワイヤーをチューブの中央開口に挿入し、複合フィラメントを形成する。
【0046】
次にフィラメントを冷間加工工程とアニール工程に交互に複数回かける。例えば、フィラメントは3個のダイで引抜く。各ダイでは半径方向圧縮の冷間加工をし、それによりフィラメントが流れ、それでその直径が縮小しその長さが伸びる。ワイヤーとチューブの間に初めに存在する隙間のために、チューブが最初はワイヤーより早く半径方向に縮小し伸びる。隙間を閉じた後は、コアワイヤーとチューブを略同じ速度で半径方向に縮小し伸びる。
【0047】
ダイの各々を通過させることによって歪み硬化と別の応力がフィラメントに生じる。それら歪み硬化と応力は1回あるいはそれ以上のアニール工程で取り除かれる。アニール工程の各々では、フィラメントを約1900°Fから約2300°Fまでの温度で加熱する。各アニール工程により、発生したほとんど全ての応力がフィラメントから取り除かれる。各アニール工程は、フィラメントのサイズにより、例えば、アニール温度で1ないし30秒間続ける。冷間加工とアニール工程の数は、初めのフィラメントサイズ、使用材料及び望ましい半径方向減面率による。ワイヤー引抜きプロセスでは、複合材料を1個のダイにつき10%の減面率で連続する複数のダイで引落とす。各アニールサイクルの間には30ないし50%減面率がある。
【0048】
次に、得られた内部人工装具を、1995年6月16日に出願したタイトルが「レーザー接合溶接部を有する内部人工装具、方法と手順」のウィリアムズ(Williams )の米国特許第08/123,440号に記載されているような、当業者に知られた方法でステントに形成する。この特許の記載は本明細書にそっくり参考として含める。
【0049】
ラミネートのハイポチューブを2つの方法の内の1つによって製造する。第一の方法では一連の材料層をラミネートシートに熱間圧延することにより製造する。各層はMP35Nのような第二構造材料の1層あるいはそれ以上の層と、タンタルのような第一X線不透過材料の1層あるいはそれ以上の層を有する。熱間圧延プロセスを最適化して多層間の機械的接合と複合材料が70,000psi から120,000psi までの引張り強度と5ないし30%の伸びを有することとを確実にする。伸びは、引張り荷重を構成要素にかけた時に、破断する前の構成要素の長さの増加%として定義する。次に、ラミネートシートをマンドレルに巻き上げ、シーム溶接をしてチューブを形成する。次に、シーム溶接したチューブを引抜き仕上げサイズにすることができる。
【0050】
ハイポチューブを製造するための第二プロセスは、コアマンドレル周囲に互いにチューブの多層を配置することである。次に、完成したチューブ径が物理的性質と必要な寸法に合うまで、従来のワイヤー引抜き方法を使用しながら、複合構造物を引抜き熱処理を行なう。ワイヤー引抜きプロセスの前に、延びる使い捨てのコアマンドレルをハイポチューブ内に配置する。次に、複合系を引抜いて寸法を仕上げ、コアマンドレルを取外す。コアマンドレルの取外しは、マンドレルの横断面を小さくすることによって行なう。コアマンドレルを単に引くことによってマンドレルの直径が十分に縮小し簡単に取り外すことができる。
【0051】
一旦、複合ハイポチューブを得たら、その構造物を旋盤タイプの工作機械上に載せ、例えば、レーザー、切削工具(バイト)、ウォーターソーあるいは電子放電機械加工(EDM)プロセスを使用して複数の窓をこのチューブから切り出す。EDMプロセス ではワイヤーを切削工具として使用し、一部を接触させて配置する。電気パルスをワイヤーに送り、放電が生じ、それによりその部分の微細な切れ目を焼き切る。EDMプロセスは応力を伴わないで正確にその部分を切断する。一旦、窓をチューブから切り出したら、次に、ショットピーニング、研磨材バレル磨き、ホーニング、電解研磨及び電解エッチングなどの手順によりチューブのばりを取る。
【0052】
窓は内部人工装具の機能にとって重要である。内部人工装具がステントの形態であれば、ステントは、元のハイポチューブより小さなサイズのバルーンカテーテル上でクリンプし、ハイポチューブの径の2倍より小さなサイズに配備することが必要である。この作業を達成するため複数の領域が内部人工装具内に存在することが必要である。その領域では変形によって細い部位が生じ、それにより約2気圧の低気圧で内部人工装具が膨張し収縮する。
【0053】
コア材料とシース材料は、互いに両立し得る熱膨張率、アニール温度範囲及び弾性率などの物理的性質を持つように選択することが好ましい。コア材料とシース材料のヤング率を合わせることは、既製の開示を考慮すれば当業者が十分にわかることであり、本発明の材料を開発する重要な一部である。最も大きな断面積を備えた構成要素は他の構成要素のヤング率と同じかそれより大きなヤング率を持たなければならない。もしもこのような状態でなければ、製造プロセス時か生体内使用時に内部人工装具の多層が薄い層に裂けることになる。内部人工装具材料はその本体から炎症性作用を起こさないように生体適合性もあり無害でなければならない。
【0054】
本発明の内部人工装具の重要な機械的性質は靭性、引張り強度及びフープ強度である。複合構造物あるいは合金は、十分な靭性、すなわち、内部人工装具の応力履歴の間でクラックの開始と伝播を防止するのに十分な破損抵抗を持たなければならない。応力履歴には製造プロセス時と配備時の荷重と人体内での循環荷重が含まれる。内部人工装具は20ジュールから120ジュールまでの範囲の靭性を有する。
【0055】
内部人工装具あるいは内部人工装具から作られた例えばステントはバルーンによって塑性的に展開されることが好ましい。そのような内部人工装具あるいは内部人工装具から作ったステントは、80,000〜140,000psi の範囲の極限引張り強度と10%最小伸び、及びより好ましくは80,000ないし110,000psi の極限引張り強度を有する。100mmHgの最小のフープ強度が管を明けたままにするのに必要である。
【0056】
シースあるいは外ラミネートの表面は粗さが30μの表面仕上げで欠陥がないことが好ましい。そのような表面仕上げにより内部人工装具の表面ではクラック核形成部位の発達が最小になる。無欠陥表面によって血栓の発生と組織の炎症の可能性と共に疲れ破損の発生が最小になる。
【0057】
複合材料は、「Guidance for the Submission of Research and Marketing Applications for Interventional Cardiology Devices:PTCA Catheters Atherectomy Catheters Lasers Intervascular Stents,the Interventional Cardiology Branch Division of Cardiovascular,Respiratory and Neurological devices office of Device Evaluation,May 1994」という文献に記載されているように、耐蝕性もなければならない。食塩水内の10年製品寿命では、複合構造物は内部人工装具が劣化しないように表面腐蝕を防止するのに十分に不活性であることが好ましく、層間で内部人工装具が劣化しないように隙間腐蝕あるいは電蝕を防止しなければならない。
【0058】
本発明はある程度特殊性を持ったその好ましい形態で説明したが、好ましい実施態様の本開示は、実施例によってのみ行なわれており、特許請求の範囲に請求した本発明の真の趣旨と範囲から逸脱しないで様々な変形がなされることが理解されよう。
【0059】
この発明の具体的な実施態様は以下の通りである。
(A) 生体適合性材料からなる本体構造物を有する内部人工装具において、前記本体構造物は、24より大きな平均原子番号を有する第一材料と前記第一材料と異なる第二材料を含み、前記第一材料は前記第一材料と前記第二材料を組み合わせた容量に対し9容量%以下の量で存在し、且つ、前記本体構造物は、入射X線の強度対透過X線の強度の比が1e-2ないし1e-4の範囲になるために効果的な質量吸収係数を有することを特徴とする内部人工装具。
(1)前記内部人工装具は1平方インチ当たり80,000〜140,000ポンドの引張り強度を有する実施態様(A)に記載の内部人工装具。
(2)前記内部人工装具は1平方インチ当たり少なくとも6ポンドのフープ強度を有する実施態様(A)に記載の内部人工装具。
(3)前記本体構造物は細長い円筒状中心コアとそのコアの周囲に配置した細長い外チューブ状部材を含み、前記第一材料と第二材料の内の1つは前記コアを含み、他の1つはチューブ状部材を含む実施態様(A)に記載の内部人工装具。
(4)前記本体構造物は1つあるいはそれ以上の一般に平面層を含み、前記第一材料と前記第二材料の内の1つは前記層の1層を含み、他は前記層の他の1層を含む実施態様(A)に記載の内部人工装具。
(5)前記第一材料はコアを含み、前記第二材料はチューブ状部材を含む実施態様(3)に記載の内部人工装具。
【0060】
(6)前記第一材料は、金、白金、タンタル、イリジウム、タングステン及びそれらの合金の1種あるいはそれ以上を含む実施態様(A)に記載の内部人工装具。
(7)前記第二材料は非磁性材料を含む実施態様(A)に記載の内部人工装具。
(8)前記第二材料は炭素、マンガン、シリコン、クロム、ニッケル、燐、硫黄、及び鉄を含む実施態様(A)に記載の内部人工装具。
(9)前記第二材料はコバルト合金を含む実施態様(A)に記載の内部人工装具。
(10)前記第二材料は炭素、マンガン、シリコン、燐、硫黄、クロム、ニッケル、モリブデン、鉄、チタン、コバルト及びそれらのすべての組合わせを含む実施態様(9)に記載の内部人工装具。
【0061】
(11)前記チューブ状部材は0.0020インチから0.0150インチまでの範囲の外径を有する実施態様(5)に記載の内部人工装具。
(12)前記チューブ状部材は0.0040インチから0.0100インチまでの範囲の外径を有する実施態様(5)に記載の内部人工装具。
(13)前記チューブ状部材は0.0050インチから0.0075インチまでの範囲の外径を有する実施態様(5)に記載の内部人工装具。
(14)前記コアは0.0005インチから0.0030インチまでの範囲にある直径を有する実施態様(5)に記載の内部人工装具。
(15)前記本体構造物は円筒状チューブと前記チューブ周囲に配置した少なくとも1つのシースを含み、前記チューブは前記第一材料からなり、前記シースは前記第二材料からなる実施態様(A)に記載の内部人工装具。
【0062】
(B) 生体適合性材料からなる本体構造物を有する内部人工装具において、前記本体構造物は、円筒状中心コアと前記コアの周囲に配置した外筒からなるワイヤーの形態であり、前記コアは24より大きな平均原子番号を有する第一材料を有し、前記外筒は第一材料と異なる第二材料を含み、前記第一材料は前記第一材料と前記第二材料を組み合わせた容量に対し9容量%以下の量で存在し、且つ、前記本体構造物は、入射X線の強度対透過X線の強度の比が1e-2ないし1e-4の範囲になるために効果的な質量吸収係数を有することを特徴とする内部人工装具。
(16)前記内部人工装具は1平方インチ当たり80,000〜140,000ポンドの引張り強度を有する実施態様(B)に記載の内部人工装具。
(17)前記第一材料は、金、白金、タンタル、イリジウム、タングステン及びそれらの合金の1種あるいはそれ以上を含む実施態様(B)に記載の内部人工装具。
(18)前記第二材料はコバルト合金を含む実施態様(B)に記載の内部人工装具。
(19)前記チューブ状部材は0.0020インチから0.0150インチまでの範囲の外径を有する実施態様(B)に記載の内部人工装具。
(20)前記チューブ状部材は0.0040インチから0.0100インチまでの範囲の外径を有する実施態様(B)に記載の内部人工装具。
【0063】
(21)前記チューブ状部材は0.0050インチから0.0075インチまでの範囲の外径を有する実施態様(B)に記載の内部人工装具。
(22)前記コアは0.0005インチから0.0030インチまでの範囲にある外径を有する実施態様(B)に記載の内部人工装具。
(23)前記内部人工装具は1平方インチ当たり少なくとも約6ポンドのフープ強度を有する実施態様(B)に記載の内部人工装具。
【図面の簡単な説明】
【0064】
【図1】本発明に従って構成した内部人工装具の1つの実施態様を示す断面斜視図である。
【図2】本発明に従って構成した内部人工装具の他の実施態様を示す断面斜視図である。
【図3】図2に示した内部人工装具から形成した内部人工チューブを示す図である。
【図4】ワイヤー径あるいは断面厚さの関数としてX線撮影のコントラストを示すグラフ図である。
【図5】ワイヤー径あるいは断面厚さの関数として一次吸収係数を示すグラフ図である。




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013