米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 医学 -> コーディス・コーポレイション

発明の名称 ポリマーと可塑剤の混合物から形成した植え込み可能な装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−222634(P2007−222634A)
公開日 平成19年9月6日(2007.9.6)
出願番号 特願2007−44108(P2007−44108)
出願日 平成19年2月23日(2007.2.23)
代理人 【識別番号】100066474
【弁理士】
【氏名又は名称】田澤 博昭
発明者 バイプル・デイブ
要約 課題
ポリマー混合物から形成された植え込み可能な装置を提供すること。

解決手段
生体適合性材料を、腔内ステントを含む様々な植え込み可能な医療装置に形成することができる。ポリマー材料を用いて、ステントを含むこのようなあらゆる装置を形成することができる。このようなステントは、バルーン拡張型または自己拡張型とすることができる。ポリマー材料は、薬物または他の生理活性物質などの添加物、および放射線不透過性物質を含むことができる。ポリマーの優先的な機械変形により、ポリマー鎖が配向されて、特定の所望の性能特性を得ることができる。
特許請求の範囲
【請求項1】
植え込み可能な医療装置において、
フレーム構造、を含み、
前記フレーム構造が、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および、放射線不透過性材料から形成されている、
植え込み可能な医療装置。
【請求項2】
請求項1に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
【請求項3】
請求項1に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【請求項4】
請求項1に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
【請求項5】
請求項1に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性材料である、植え込み可能な医療装置。
【請求項6】
請求項1に記載の植え込み可能な医療装置において、
前記放射線不透過性材料は、硫酸バリウムを含む、植え込み可能な医療装置。
【請求項7】
請求項1に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
【請求項8】
植え込み可能な医療装置において、
フレーム構造、を含み、
前記フレーム構造が、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、放射線不透過性材料、および、少なくとも1種類の治療薬から形成されている、
植え込み可能な医療装置。
【請求項9】
請求項8に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
【請求項10】
請求項8に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【請求項11】
請求項8に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
【請求項12】
請求項8に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
【請求項13】
請求項8に記載の植え込み可能な医療装置において、
前記放射線不透過性材料は、硫酸バリウムを含む、植え込み可能な医療装置。
【請求項14】
請求項8に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ラパマイシンを含む、植え込み可能な医療装置。
【請求項15】
請求項8に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ヘパリンを含む、植え込み可能な医療装置。
【請求項16】
請求項8に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、パクリタキセルを含む、植え込み可能な医療装置。
【請求項17】
請求項8に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
【請求項18】
植え込み可能な医療装置において、
フレーム構造、を含み、
前記フレーム構造が、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および、少なくとも1種類の治療薬から形成されている、
植え込み可能な医療装置。
【請求項19】
請求項18に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
【請求項20】
請求項18に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【請求項21】
請求項18に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
【請求項22】
請求項18に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
【請求項23】
請求項18に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ラパマイシンを含む、植え込み可能な医療装置。
【請求項24】
請求項18に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ヘパリンを含む、植え込み可能な医療装置。
【請求項25】
請求項18に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、パクリタキセルを含む、植え込み可能な医療装置。
【請求項26】
請求項18に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
【請求項27】
植え込み可能な医療装置において、
フレーム構造であって、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、および、少なくとも1種類の可塑剤から形成された、フレーム構造と、
前記フレーム構造に付加された、少なくとも1種類の治療薬と、
を含む、
植え込み可能な医療装置。
【請求項28】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
【請求項29】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【請求項30】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
【請求項31】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
【請求項32】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、前記フレーム構造の表面に直接付加されている、植え込み可能な医療装置。
【請求項33】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ポリマー賦形剤に含められて、前記フレーム構造の表面に付加されている、植え込み可能な医療装置。
【請求項34】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ラパマイシンを含む、植え込み可能な医療装置。
【請求項35】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ヘパリンを含む、植え込み可能な医療装置。
【請求項36】
請求項27に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、パクリタキセルを含む、植え込み可能な医療装置。
【請求項37】
請求項27に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
【請求項38】
植え込み可能な医療装置において、
フレーム構造、を含み、
前記フレーム構造が、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、および、少なくとも1種類の可塑剤から形成されている、
植え込み可能な医療装置。
【請求項39】
請求項38に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
【請求項40】
請求項38に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【請求項41】
請求項38に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
【請求項42】
請求項38に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
【請求項43】
請求項38に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、硬い脆性材料を含む、植え込み可能な医療装置。
【請求項44】
請求項38に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
【請求項45】
植え込み可能な医療装置において、
フレーム構造であって、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および、放射線不透過性材料から形成されている、フレーム構造と、
前記フレーム構造に付加された、少なくとも1種類の治療薬と、
を含む、
植え込み可能な医療装置。
【請求項46】
請求項45に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
【請求項47】
請求項45に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【請求項48】
請求項45に記載の植え込み可能な医療装置において
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
【請求項49】
請求項45に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
【請求項50】
請求項45に記載の植え込み可能な医療装置において、
前記放射線不透過性材料は、硫酸バリウムを含む、植え込み可能な医療装置。
【請求項51】
請求項45に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
【請求項52】
請求項45に記載の植え込み可能な医療装置において
前記少なくとも1種類の治療薬は、前記フレーム構造の表面に直接付加されている、植え込み可能な医療装置。
【請求項53】
請求項45に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ポリマー賦形剤に含められて、前記フレーム構造の表面に付加されている、植え込み可能な医療装置。
【請求項54】
請求項45に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ラパマイシンを含む、植え込み可能な医療装置。
【請求項55】
請求項45に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ヘパリンを含む、植え込み可能な医療装置。
【請求項56】
請求項45に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、パクリタキセルを含む、植え込み可能な医療装置。
発明の詳細な説明
【開示の内容】
【0001】
〔発明の分野〕
本発明は、腔内ポリマーステントに関し、詳細には、ポリマー類の混合物、ポリマー類と可塑剤の混合物、ポリマー類と放射線不透過性物質との混合物、ポリマー類と可塑剤と放射線不透過性物質との混合物、ポリマー類と放射線不透過性物質と治療薬との混合物、ポリマー類と可塑剤と放射線不透過性物質と治療薬との混合物、またはこれらの任意の組合せから形成された腔内ポリマーステントに関する。このようなポリマーステントは、応力がかかると分子の配向が変更されることがある。
【0002】
〔関連技術の考察〕
現在製造されている腔内ステントでは、臨床的に適当な生体内負荷条件下での装置の所望の機械的な挙動に対して、ステントを形成する材料の特性を十分に一致させることができない。全ての腔内装置は、好ましくは、脈管を目的とする内腔直径に再建するのを助ける瞬間的および/または持続的な外向きの力によって脈管の開存性を維持する特性、配置の際に過度に径方向に反動するのを防止する特性、十分な疲労耐性を示す特性、および、目的とする拡張直径の全範囲を十分にカバーできるように十分な延性を示す特性を含め、特定の特性を有するべきである。
【0003】
したがって、装置の設計者が特定用途に装置を設計できるようにする、腔内ステントを製造するための材料および方法の開発が要望されている。
【0004】
〔発明の概要〕
本発明は、簡単に上述したように、従来から利用できる材料を特定の腔内治療用途に用いる際の制限を解消する。
【0005】
一態様に従えば、本発明は、植え込み可能な医療装置に関する。このような医療装置は、フレーム構造を有する。このフレーム構造は、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および放射線不透過性材料から形成されている。
【0006】
別の態様に従えば、本発明は、別の植え込み可能な医療装置に関する。このような医療装置は、フレーム構造を有する。このフレーム構造は、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、放射線不透過性材料、および少なくとも1種類の治療薬から形成されている。
【0007】
別の態様に従えば、本発明は、別の植え込み可能な医療装置に関する。このような医療装置は、フレーム構造を有する。このフレーム構造は、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および少なくとも1種類の治療薬から形成されている。
【0008】
別の態様に従えば、本発明は、別の植え込み可能な医療装置に関する。このような医療装置は、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマーおよび少なくとも1種類の可塑剤から形成されたフレーム構造と、このフレーム構造に付加された少なくとも1種類の治療薬とを含む。
【0009】
別の態様に従えば、本発明は、別の植え込み可能な医療装置に関する。このような医療装置は、フレーム構造を有する。このフレーム構造は、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマーおよび少なくとも1種類の可塑剤から形成されている。
【0010】
別の態様に従えば、本発明は、別の植え込み可能な医療装置に関する。このような医療装置は、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および放射線不透過性材料から形成されたフレーム構造と、このフレーム構造に付加された少なくとも1種類の治療薬とを含む。
【0011】
本発明の植え込み可能な医療装置のための生体適合性材料は、血管ステント、胆管ステント、および尿管ステントなどの脈管開存装置、心房中隔閉塞装置および心室中隔閉塞装置などの血管閉塞装置、卵円孔開存閉塞装置、および固定装置などの矯正装置を含め、様々な医療用途に用いることができる。
【0012】
本発明の生体適合性材料は、現行のステントおよび/または他の植え込み可能な医療装置よりも、広範な負荷条件に耐えることができるステントおよび/または他の植え込み可能な医療装置の製造を可能にする固有の組成物および設計特性を含む。具体的には、生体適合性材料内に設計する分子構造により、様々な負荷条件に対応可能な様々なジオメトリを有するステントおよび/または他の植え込み可能な医療装置の設計が容易になる。
【0013】
本発明の腔内装置は、様々な生体適合性ポリマー材料から形成することができる。所望の機械特性を得るべく、原料の状態または管状もしくはシート状の状態であっても、ポリマー材料を物理的に変形させて、一定レベルにポリマー鎖を整合させることができる。この整合を利用して、ステントの1または複数の組成物の物理特性および/または機械特性を向上させることができる。
【0014】
本発明の腔内装置は、ポリマー材料の混合物、ポリマー材料と可塑剤の混合物、ポリマー材料と治療薬の混合物、ポリマー材料と放射線不透過性物質の混合物、ポリマー材料と治療薬および放射線不透過性物質の両方との混合物、ポリマー材料と可塑剤および治療薬との混合物、ポリマー材料と可塑剤および放射線不透過性物質との混合物、ポリマー材料と可塑剤、治療薬、および放射線不透過性物質との混合物、および/または任意のこれらの組合せから形成することもできる。特性が異なる材料を混合して、それぞれの材料の有用な特性を有する材料を得ることができる。例えば、硬い脆性材料と軟らかいエラストマー材料を混合して、硬い靭性材料を生成することができる。加えて、治療薬と放射線不透過性物質の一方または両方を他の材料と混合して、これらの材料の濃度を高くすると共に、より均一に分散させることができる。このような混合物を生成するための様々な方法として、溶解法および溶融法技術を挙げることができる。
【0015】
〔詳細な説明〕
本発明の上記および他の特徴および利点は、以下に詳細に後述する添付の図面に例示されている本発明の好適な実施形態から明らかになるであろう。
【0016】
植え込み可能な医療装置は、ポリマー材料を含む様々な適当な生体適合性材料から形成することができる。このようなポリマー材料の内部構造は、ポリマーの機械的および/または化学的な操作で変更することができる。このような内部構造の変更を利用して、詳細を後述する結晶形態および非晶質形態および配向などの特殊な総合特性を有する装置を形成することができる。本発明は、様々な植え込み可能な医療装置に適用することができるが、以下の詳細な説明は、説明を容易にするべく、例示的なステントについて行う。
【0017】
本発明に従えば、植え込み可能な医療装置は、ポリマー材料を含む様々な生体適合性材料から形成することができる。このようなポリマー材料は、非分解性、生体分解性、および/または生体吸収性とすることができる。このようなポリマー材料は、単一ポリマー、ポリマー類の混合物、およびポリマー類と可塑剤の混合物から形成することができる。加えて、薬物および/または放射線不透過性物質などの他の物質を、上記した材料と混合する、付着させる、または他の方法で付加することができる。多数の化学処理および/または物理処理を利用して、材料、従って最終装置の化学特性および物理特性を変更することができる。
【0018】
例示的な装置
図1を参照すると、本発明に従った例示的なステント100の部分平面図が例示されている。この例示的なステント100は、複数の可撓性コネクタ104によって互いに連結されている複数のフープ要素102を含む。フープ要素102は、連続的なひと続きの実質的に長さ方向または軸方向に向いた径方向ストラット部材106、および交互に実質的に周方向に向いた径方向弧状部材108として形成されている。平面図に示されているように、フープ要素102は、可撓性コネクタ104によって互いに連結されて実質的に管状のステント構造を形成する実質的にリング部材である。径方向ストラット部材106と交互の径方向弧状部材108の組合せにより、実質的に正弦波パターンが形成されている。フープ要素102は、様々なデザイン的特徴を持つように設計することができ、様々な構造にすることができるが、例示的な実施形態では、径方向ストラット部材106は、中心部分110で幅が広くなっている。このデザイン的特徴は、薬物送達のために表面積を増大させることを含め、様々な目的のために利用することができる。
【0019】
可撓性コネクタ104は、連続的なひと続きの可撓性ストラット部材112および交互する可撓性弧状部材114から形成されている。可撓性コネクタ104は、上述したように、近接するフープ要素102に連結されている。この例示的な実施形態では、可撓性コネクタ104は、一端が1つのフープ要素の径方向弧状部材に連結され、他端が近接するフープ要素の径方向弧状部材に連結された実質的にN型の形状を有する。フープ要素102と同様に、可撓性コネクタ104は、様々なデザイン的特徴および様々な構造を有することができる。例示的な実施形態では、可撓性コネクタ104の両端部は、ステントのクリンプの際にネスティングが容易になるように、近接するフープ要素の径方向弧状部材の異なる部分に連結されている。この例示的な構造では、近接する2つのフープ要素の径方向弧状部材同士はわずかにずれていて、1つおきのフープ要素の径方向弧状部は実質的に一致していることに留意されたい。加えて、各フープ要素の各径方向弧状部材は、近接するフープ要素の各径方向弧状部材に連結する必要がないことに留意されたい。
【0020】
腔内足場すなわちステントの可撓性コネクタに様々なデザインを用いることができることに留意されたい。例えば、上記したデザインでは、コネクタは、実質的に長さ方向を向いたストラット部材と可撓性弧状部材の2つの要素を含む。しかしながら、代替のデザインでは、コネクタは、実質的に長さ方向に向いたストラット部材だけを含んで撓性弧状部材を含まないか、または可撓性弧状コネクタを含んで実質的に長さ方向に向いたストラット部材を含まないようにすることができる。
【0021】
ステント100の実質的に管状の構造は、動脈などの実質的に管状の器官の開存性を維持するために一時的または永久的な足場となる。ステント100は、内腔面および外周面を含む。これらの2つの表面間の距離が、肉厚を画定する。ステント100は、送達のための膨張していない直径と、ステント100を送達する器官の通常の直径にほぼ一致する拡張した直径とを有することができる。動脈などの管状器官は、直径が様々であるため、本発明の概念から逸脱することなく、拡張していない直径と拡張した直径との様々なセットを有する様々な大きさのステントをデザインすることができる。上記したようにステント100は、様々なポリマー材料から形成することができる。このようなステントは、ポリマーと金属の複合材料などの他の材料から形成することができる。例示的な材料の例として、生物学的安定性金属‐生物学的安定性ポリマー(biostable metal-biostable polymers)、生物学的安定性金属‐生体吸収性ポリマー(biostable metal-bioabsorbable polymers)、生体吸収性金属‐生物学的安定性ポリマー(bioabsorbable metal-biostable polymers)、および生体吸収性金属−生体吸収性ポリマー(bioabsorbable metal-bioabsorbable polymers)を挙げることができる。このような材料は、ステント全体またはその一部に用いることができる。
【0022】
材料特性
したがって、例示的な一実施形態では、腔内足場要素は、非架橋結合熱可塑性プラスチック(non-crosslinked thermoplastics)、架橋結合熱硬化性プラスチック(cross-linked thermosets)、複合材、およびこれらの混合物を含むポリマー材料などの非金属材料から形成することができる。通常は、ポリマーが各状態の固体に関連して機械特性を有する3種類の形態が存在する。すなわち、結晶構造、半結晶構造、および/または非晶質構造である。全てのポリマーは、結晶化にはポリマー鎖内での分子の高度な規則性が必須であるため、完全に結晶化できない。結晶化するポリマーであっても、結晶化の程度は、通常は100%未満である。完全な結晶構造と非晶質構造との間には、2つの熱遷移、すなわち結晶‐液体遷移(すなわち、融点温度Tm)とガラス‐液体遷移(すなわち、ガラス転移温度Tg)とが存在する。これら2つの転移温度の範囲内では、規則的に配列された結晶とカオス的な非晶質ポリマードメインの混合物が存在しうる。
【0023】
「折り畳み」鎖を有するポリマー結晶の形成のホフマン‐ラウリッツェン理論(Hoffman-Lauritzen theory)は、ポリエチレンの薄い単一結晶が希釈溶液から成長できるという1957年の発見に基づいている。折り畳み鎖は、好ましくは、実質的に結晶の構造を形成するのに必要である。ホフマン(Hoffman)とラウリッツェン(Lauritzen)は、鎖‐折り畳み核の形成に関連した熱力学に特に注意を払って、「溶液」および「溶融物」からポリマーが結晶化する運動理論の基礎を確立した。
【0024】
希釈溶液からの結晶化では、肉眼で完全な単結晶を生成する必要がある(通常は、約200倍〜約400倍の倍率である)。これに関して、ポリマーは、無機塩などの低分子化合物と実質的に異なっていない。温度、溶媒および溶質の濃度などの結晶化条件は、結晶の形成および最終形態に影響を与えることがある。ポリマーは、薄いプレートすなわち「ラメラ(lamellae)」の形態に結晶化する。このようなラメラの厚みは、10ナノメータ(10nm)台である。結晶プレートの小さい方の寸法に対して垂直な寸法は、結晶化の状態によって異なるが、よく成長した結晶では、プレートの厚みよりも何倍も大きい。結晶内の鎖の方向は、結晶の短い寸法に沿っている。これは、分子が前後に折り畳まれ(例えば、折り畳まれた消火ホースのように)、折り畳まれた分子の連続的な層がプレートの横方向の成長になることを示唆している。結晶は、1つの分子からなることはなく、また1つの分子が1つの結晶に排他的に存在することもない。ポリマー鎖によって形成されたループは、結晶から出る際にその結晶の周りを回ってその結晶に再び進入する。2つの結晶部分を連結する部分は、非晶性ポリマーと考えることができる。加えて、ポリマー鎖の端部は、上記したように、結晶の規則的な折り畳みパターンを阻害し、その結晶から排除される傾向にある。したがって、ポリマー鎖の端部は、ポリマーの非晶性部分となる。したがって、現在は、100%結晶のポリマー材料は知られていない。重合後の処理条件によって、結晶構造がかなりの程度決まる。
【0025】
単結晶は、バルク法による結晶化では観察されない。溶融物からのバルク結晶化ポリマーは、核形成の中心に対して対称な「球晶(spherulites)」と呼ばれるドメインを有する。この対称性は、球晶の成長が別の成長する球晶との接触による影響を受けない場合、完全な円形である。鎖の折り畳みは、溶融状態からポリマーを結晶化する際の必須の構造である。球晶は、核形成部位から放射状に広がる「ラメラ」結晶の凝集からなる。したがって、溶液とバルク成長結晶との間に一定の関係が存在する。
【0026】
球晶の対称性は、時間と共に生成される。繊維状またはラス状(lathlike)の結晶は、樹枝の成長と同様に分岐して広がり始める。ラメラが、核から立体的に広がる時に、結晶の分岐が続いて球状の形態が形成される。成長は、連続した鎖の層が放射状のラス(laths)の端部に付加されて起こる。ポリマー分子の鎖構造は、所定の分子が、2つ以上のラメラに関与して、同じまたは近接する球晶から放射状に広がる晶子を連結することを示唆している。これらのラメラ間の連結は、低分子化合物の球晶では不可能であり、結果として弱い機械的強度を示す。
【0027】
分子鎖の折り畳みは、交差分極剤の存在下で球晶を識別する「マルタ(Maltese)」クロスの起源である。所定のポリマー系の場合、結晶の大きさの分布は、初めの核形成密度、核形成速度、結晶の成長速度、および配向の状態による影響を受ける。ポリマーは、核形成が放射状の成長よりも優勢である条件で、結晶が小さくなる。大きな結晶は、核形成部位が比較的少なく、成長速度が速い場合に形成される。球晶の直径は、ポリマー系および結晶化条件によって約数μm〜約数百μmの範囲となる。
【0028】
したがって、バルク結晶化ポリマーの球晶形態では、異なるレベルでの組織の規則化、すなわち、個々の分子が結晶内に折り畳まれ、球晶内に配向される。球晶は、合成起源、生物起源、および月の石を含む地質起源の有機系および無機系で観察されるため、ポリマーに固有のものではない。
【0029】
応力による結晶化は、フィルムおよびファイバー技術で重要である。ポリマーの希釈溶液が急速に攪拌されると、「シシカバブ」形態を有するとして形容される普通ではない構造が成長する。これらは、繊維状の中心の柱に沿って延びた折り畳み鎖の結晶の塊からなる。構造の「シシ」部分と「カバブ」部分の両方において、ポリマー鎖は、構造の全体軸に平行である。
【0030】
ポリマー溶融物を、熱安定状態まで剪断および冷却すると、ポリマー鎖が、そのランダムコイルから不安定になり、容易に延びて剪断方向に平行になる。これにより、変形した球晶から小さな結晶の凝集の形成が生成されうる。球晶からフィブリルへの変換、多形結晶形成変化、既に形成された結晶ラメラの再配向、定方向結晶の形成、非晶性ポリマー鎖の配向、および/またはこれらの組合せを含め、他の形態変化が起こりうる。
【0031】
分子の配向は、主にバルクポリマーの特性に影響を与えて、様々な材料の用途に必須である最終的な特性に強い影響を及ぼすため重要である。浸透性、磨耗性、屈折率、吸収率、分解速度、破壊時の引張り強さ、降伏応力、引裂き強度、弾性率、および伸張率などの物理特性および機械特性は、配向による影響を受ける特性の一部である。配向は、異方性の挙動を促進するため、常に好ましいわけではない。配向は、単軸、二軸、および多軸などのいくつかの方向で生じうる。配向は、延伸、圧延、カレンダーがけ、紡績、吹込み成形、および任意の他の適当な加工法によって誘導することができ、ファイバー、フィルム、チューブ、ボトル、射出成形および押出し製品、コーティング、および複合物を含む系に存在する。ポリマー材料が処理される場合、特定の方向に優先配向が存在するであろう。この優先配向は、通常は処理が行われる方向であり、縦方向(MD:machine direction)と呼ばれる。多くの製品は、特定の方向で改善された特性が得られるように意図的に配向される。製品が溶融処理される場合、ある程度の優先配向を有するであろう。溶解処理材料の場合は、剪断処理の際に配向を固定するために、ポリマー溶液を剪断し、直後に沈降または冷却して所望のジオメトリにするなどの方法によって、配向を処理の際に誘導することができる。別法では、ポリマーが、硬質の棒状の化学構造を有する場合、そのポリマーは、ポリマー溶液中の液晶形態によって処理の際に配向される。
【0032】
配向の状態は、変形のタイプおよびポリマーのタイプによって決まる。材料が、たとえ強く変形または延伸されたとしても、ポリマー鎖が緩んで最初の状態に戻るため、高いレベルの配向を付与する必要はない。これは通常、延伸温度で極めて柔軟なポリマーで起こる。したがって、様々な因子が、所定のポリマー系における配向の状態に影響を及ぼしうる。このような因子には、例えば、歪み速度、剪断速度、および頻度などの変形の速度、変形または延伸率の程度、温度、分子量およびその分布、例えば立体規則性および幾何異性体などの鎖構成、例えば線形、分鎖、架橋結合、および樹状性などの鎖構造、例えば可撓性、硬質、および半硬質などの鎖の硬度、ポリマー混合物、例えばランダムポリマー、ブロックポリマー、および交互ポリマーなどのコポリマーの種類、例えば可塑剤、硬質および軟質充填材、長寸および短寸ファイバー、および治療薬などの添加物の存在が含まれる。
【0033】
ポリマーは、2つの相、すなわち結晶と非晶質からなり、配向の影響がこれらの相によって異なるため、最終的な配向は、半結晶ポリマー系では、これらの2つの相に対して同じでないことがある。これは、柔軟な非晶質鎖が、硬質の結晶相に比べて、変形および負荷の状態に異なって応答するためである。
【0034】
異なる相は、配向が誘導された後に形成され、その挙動は、ポリマー主鎖の化学的性質によって決まる。完全に非晶質の材料などの非晶質状態は、単一の配向挙動を有するであろう。しかしながら、例えば繊維強化充填系および液晶などの半結晶ブロックコポリマーまたは複合材であるポリマーでは、配向挙動は、2つ以上のパラメータによって表現する必要がある。配向挙動は、一般に、材料の構造および配向の状態に正比例する。結晶単位格子、ラメラの厚み、ドメインの大きさ、球晶構造、配向上部構造、およびポリマー混合物の相分離ドメインなどのポリマー系に存在する構造のいくつかの共通レベルが存在する。
【0035】
例えば、押出しポリエチレンでは、その構造は、積層折り畳み鎖ラメラ構造である。構造内のラメラの配向は、縦方向(machine direction)に沿っているが、小板(platelets)は、縦方向に対して垂直に配向されている。ラメラ間の非晶質構造は、通常は配向されていない。材料の機械特性は、例えば、0度〜縦方向、45度〜縦方向、および90度〜縦方向などの様々な方向で試験すると異なるであろう。伸張率の値は、通常は、材料を縦方向に延ばすと最も低い。縦方向に対して45度で延ばすと、ラメラの剪断変形が起こり、高い伸張率の値が得られる。縦方向に対して90度で延ばすと、材料は、鎖の軸が折り畳まれていないため最も高い伸張率を示すであろう。
【0036】
ポリマー鎖が、所定の変形軸に対して角度をなして配向されている場合、ポリマー鎖の配向は、ヘルマン配向関数(Hermans orientation function)fによって画定することができる。ヘルマン配向関数fは、完全な配向を表す1から、垂直の配向を表す−1/2、および軸に沿ったランダム配向を表す0にそれぞれ変化する。これは、主に単軸配向系で当てはまる。複屈折、線形2色性、広角X線散乱、偏光ラマン散乱、偏光蛍光、および核磁気共鳴すなわちNMRなどの配向を測定するために用いられるいくつかの技術が存在する。
【0037】
加工法
本発明のシステムおよび方法に従えば、ポリマー生体吸収性材料からなる薬物送達装置は、任意の様々な加工法によって形成することができる。薬物送達装置を形成するために用いる加工法は、薬物または他の生理活性物質の分解を最小限にするために低温加工法が好ましい。このような生理活性物質は、高温で不安定であり、装置を構成する生体吸収性ポリマー材料の基質に含められる。加工法は、溶媒を用いた低温の溶解法によって、生体吸収性ポリマー材料から装置を形成することを含むことができる。この溶解法では、例えば、乾式および湿式紡糸を含む紡糸、静電紡糸、混合繊維、溶媒抽出、コーティング、ワイヤコーティング、中空繊維および膜紡績、円盤紡績(厚みが均一の薄い膜)、インクジェット印刷(三次元印刷など)、凍結乾燥、押出しおよび共押出し、超臨界流体、溶媒キャストフィルム、または溶媒キャストチューブなどによって溶媒を用いる。別法では、薬物送達装置は、例えば、紡糸、押出し、共押出し、射出成形、吹込み成形、引抜き成形、および圧縮成形などによって、薬物または高温で安定する物質が溶融状態での従来のポリマー処理方法によっても形成することができる。別法では、薬物は、ポリマー基質内で拡散させて薬物送達装置に含めることもできる。これは、薬物を多く含む溶液中で装置を膨張させて高圧で拡散させる、または超臨界流体を用いて装置内の薬物を膨張させて拡散させるなどのいくつかの方法によって達成することができる。別法では、装置を生体吸収性ポリマーから形成した後に、薬物または作用物質を、装置にスプレー、浸漬、またはコーティングすることができる。いずれの場合も、薬物または作用物質が用いられる場合は、ポリマー基質と薬物または作用物質の混合物を、例えば、所望に応じて、後に様々なジオメトリまたは構造に操作できるファイバー、フィルム、ディスク/リング、またはチューブなどの構造に加工する。
【0038】
様々な加工法により、様々な構造、ジオメトリ、または構成を処理する生体吸収性ポリマーに付与することができる。例えば、硬質ポリマーから加工されたチューブは、極めて硬質になる傾向にあるが、静電法または乾燥凍結によって加工すると極めて柔軟にすることができる。硬質ポリマーから形成する場合、チューブは中実であり、静電法または凍結乾燥による場合、チューブは多孔質である。他の加工法により、ファイバー、マイクロファイバー、薄膜および厚膜、ディスク、発泡体、微小球、さらに複雑なジオメトリまたは構成さえも含みうる別のジオメトリおよび構造を付与することができる。溶融物または溶液から加工したファイバー、フィルム、およびチューブは、編組みおよび/またはレーザーカットによって、管状、スライドとロック、螺旋、または他の形などの様々なデザインにさらに加工することができる。様々な加工法によって形成される構造、ジオメトリ、または構成における差異は、所望の寸法、強度、薬物送達、および視覚の特性を有する様々な薬物送達装置を形成するのに有用である。ファイバー、フィルム、またはチューブは、ステントの形状などの所望のジオメトリまたは構造にレーザーカットすることができる。他の機械加工技術を用いることもできる。
【0039】
異なる加工法も同様に、処理する生体吸収性ポリマーの形態の特性を変更することができる。例えば、ポリマーの希釈溶液を急速に攪拌する場合、ポリマーは、構造の全体の軸に概ね平行なポリマー鎖を有する傾向にある。他方、ポリマー溶液またはポリマー溶融物を剪断し、熱安定状態に急冷すると、ポリマー鎖は、剪断方向に平行に延びる傾向にある。さらに他の形態の変化も、他の処理技術によって起こる。このような変化の例として、例えば、球晶からフィブリルへの変換、多形結晶の構成の変化、既に形成された結晶ラメラの再配向、配向された晶子の形成、非晶性ポリマー鎖の配向、結晶化、および/またはこれらの組合せを挙げることができる。
【0040】
超臨界二酸化炭素などの超臨界流体によって形成される生体吸収性ポリマー材料からなるステントの場合、超臨界流体を用いて、押出し、成形、または他の従来の加工法の際に処理温度を下げることができる。ファイバー、チューブ、フィルム、または発泡体などの様々な構造は、超臨界流体を用いて形成することができる。超臨界流体を用いる低温法では、形成される構造内に含められる薬物の分解が最小限になる傾向にある。
【0041】
溶解法
溶液からチューブによって形成される生体吸収性ポリマー材料からなるステントの場合、ポリマー溶液の粘度により、チューブを形成するために用いられる加工法が決まる。ポリマー溶液の粘度は、ポリマーの分子量、ポリマー濃度、溶液を調製するために用いる溶媒、処理温度、および剪断速度などの因子によって決まる。例えば、平均分子量が300,000ダルトンを超え、固有粘度が2.0dL/gを超える比較的分子量の大きいポリマーを、本発明に従って用いられる。
【0042】
約0%〜約50%の範囲の薬物を含むジオキサン中で固有粘度が2〜2.5dL/gのPLGAから調製されたポリマー溶液(約1wt%〜20wt%の濃度)を、例えば、室温または薬物を分解しない温度で、シリンジポンプを用いて針でマンドレルに直接堆積させることができる。別法では、マンドレルを溶液中で浸漬コーティングし、乾燥させ、続いて浸漬コーティングステップを行って所望の肉厚にする。様々な大きさのマンドレルを用いて、例えば、直径、肉厚などの最終チューブの寸法を様々にすることができる。溶液の流速、マンドレルの回転数(RPM)、移動速度、および針の大きさなどの処理の最適化を実施して、ステントを形成するのに適した均一な直径および肉厚を有する高品質チューブを形成することができる。ポリマー溶液はまた、放射線不透過性物質と、可塑剤および他のポリマーなどの他の添加物を含むことができる。マンドレル上の薬物を含むポリマーチューブから、溶媒を、薬物を分解しない温度および条件で除去することができる。例えば、加熱乾燥および/または真空乾燥、超臨界二酸化炭素、凍結乾燥、およびこれらの組合せを用いることができる。次に、チューブを、例えば、レーザーカットまたは任意の他の適当な機械加工技術によってステントにすることができる。
【0043】
例えば、約0%〜約50%の範囲の薬物を含むジオキサン中で固有粘度が2〜2.5dL/gのPLGAから調製されたポリマー溶液(約20wt%〜50wt%の濃度)を、歯車ポンプを用いて環状ダイを介して垂直に押し出し、溶媒を加熱チムニーに通してチューブを形成することができる。別法では、ポリマー溶液を、歯車ポンプを用いて環状ダイを介して水平方向に押し出し、例えば、非溶解水槽に通して溶液を沈殿させてチューブを形成することができる。次に、垂直または水平方向に押し出された中空チューブを、チューブに衝突しないでチューブの形状を維持する収集装置すなわちホイールで収集することができる。別法では、押出し法の際にチューブがつぶれるのを防止するために、ダイの内腔に、金属マンドレル、モノフィラメントファイバー、または加圧ガスおよび/または空気を導入することができる。薬物を含むポリマーチューブから、溶媒を、薬物を分解しない温度および条件で除去することができる。溶液の流速、溶液の温度、収集速度、空気、および凝集温度などの処理の最適化を実施して、ステントを形成するのに適した均一な直径および肉厚を有する高品質チューブを形成することができる。ポリマー溶液はまた、放射線不透過性物質と、可塑剤および他のポリマーなどの別の添加剤を含むことができる。
【0044】
例えば、約1wt%〜50wt%のポリマー溶液からチューブを形成する別の方法では、環状ダイを備えた押出し機を用いて溶液を押し出す。押出しの際に、例えば真空ポンプを用いて、ベントから溶媒を徐々に除去する、すなわち多段階で揮発部分を除去して、溶液の粘度を上げることができる。二軸スクリューまたはベント式スクリュー押出し機を用いて、溶液の粘度を上げることもできる。残った溶媒を、薬物を分解しない温度および条件でさらに除去することができる。ポリマー溶液はまた、放射線不透過性物質と、可塑剤や他のポリマーなどの他の添加物を含むこともできる。
【0045】
溶媒中のポリマー濃度が一定値を超えると、極度に粘性の高い溶液、ゲル、または膨潤ネットワーク(swollen networks)となる。このような系は、溶媒すなわち可塑剤と薬物にポリマーを混合または曝して、均一に分散した調合物を生成して調製することができる。様々な混合方法で、例えばヘンシェルミキサ(Henschel Mixer)などの高剪断低温ミキサ、および反対または同じ方向に回転する二軸押出し機などを用いて、低温で、高剪断混合物および混練成分などの様々な成分を利用して調合物を調製することができる。構成成分を混合した後、溶媒すなわち可塑剤がポリマー樹脂の内部または周囲に十分に分布するように、混合物を平衡状態にすることができる。溶媒のロスを完全に防止するために、混合物を、ビンまたは他の適当な容器内に入れて密閉し、再結晶化、凝集、および溶媒の揮発を防止する温度で保管する。次に、このような平衡状態の混合物を、例えば、高圧歯車ポンプおよび環状ダイを用いて、薬物の分解および溶媒の揮発が生じない低温で、垂直方向または水平方向に押し出すことができる。押出し中に一定の溶媒レベルに維持することが、粘度のばらつきが一切なく、材料をバレル内で均一に処理する際に重要である。これは、従来の溶融押出し技術を用いて達成することができる。別法では、ビレットを調合物から形成して、ラム押出しでチューブを押し出すことができる。ゲルおよび膨潤材料を加工するために用いられる他の方法も、チューブの形成に用いることができる。例として、ポリテトラフルオロエチレン(polytetrafluoroethylene)および超高分子ポリエチレンなどの材料を挙げることができる。溶媒は、上記した方法で説明したように、押し出し中および押し出しの後に除去することができる。
【0046】
例えば、約0%〜約50%の範囲の薬物を含むジオキサン中で固有粘度が2dl/g〜2.5dl/gのPLGAから調製された約50wt%濃度を超えるポリマー調合物を、高圧歯車ポンプおよび環状ダイを用いて押し出すことができる。この押出しは、薬物を分解しない温度で、バレル内で比較的に短い滞留時間で行われる。薬物を含むポリマーチューブから、溶媒を、薬物を分解しない温度および条件で除去することができる。ポリマー調合物はまた、放射線不透過性物質と、可塑剤および他のポリマーなどの他の添加物を含むこともできる。
【0047】
全ての溶媒処理チューブは、様々な形状、ジオメトリ、および構造に形成することができる。例えば、このようなチューブは、共押し出し成形し、かつ/またはワイヤコーティングすることができる。当分野で知られている他の加工技術を用いることもできる。
【0048】
低温で材料を処理するために必要な溶媒すなわち可塑剤の量は、ポリマーの形態によって決まる。低温処理条件を達成するために必要な溶媒すなわち可塑剤の量は、非晶質材料の方が半結晶材料よりも少ないであろう。これは、非晶相の方が、結晶相に比べて溶解すなわち膨潤が容易であるためである。均質な形態を得るために、ポリマーを、高温(溶融点を超える温度)で溶融押し出しし、急冷して非晶質材料を形成することができる。次に、この非晶質材料を溶媒すなわち可塑剤と混合して、上記した低温処理条件を達成することができる。一般に、溶媒すなわち可塑剤の量が多ければ、混合物の溶解温度が下がり、溶解粘度が低下する。
【0049】
溶融法
薬物送達装置および非薬物送達装置は、高温で安定する薬物または作用物質が溶融状態で、従来のポリマー加工法によって形成することもできる。溶融法は、ポリマーが溶媒に溶解しにくい薬物送達装置の形成に用いることもできる。所望の混合および分散を達成するために、異なる軸要素を備えた二軸押出し機を用いてポリマーを配合することができる。配合処理(compounding process)の際に添加物を加えて、例えば多成分混合物すなわち複合剤を生成するためのフィーダー装置も存在する。このような添加物の例として、ペレット、大きさが異なる粉末、短いファイバー、または液体を挙げることができる。例えば1wt%〜約50wt%のポリマーおよび薬物を、低い剪断条件下で、低温で二軸押出し機を用いて溶融混合することができる。配合材料は、ペレット化して、単軸押出し機を用いて押し出して、所望のジオメトリ(肉厚など)のチューブにすることができる。次にチューブをレーザーカットしてステントを形成することができる。上記したように、他の機械加工技術を用いることもできる。配合ステップの際に、例えば約1wt%〜約40wt%の放射線不透過性物質と可塑剤および他のポリマーなどの他の添加物をポリマー調合物に添加することもできる。
【0050】
ポリマーは、上記した感温性薬物または作用物質のため、薬物を用いずに、放射線不透過性物質または他のポリマーおよび可塑剤と配合することができる。適当な配合およびチューブの押出しのために、適切な溶融を達成するべく溶融法の温度を十分に上げることができるが、ポリマーが変性しないように注意を払うべきである。次に、このような材料から形成したレーザーカットステントに薬物をコーティングすることができる。この場合、座屈およびステントの変形を起こすようなステント内への溶媒の浸透を防止するべく、迅速に揮発し、かつ、ステント材料を溶解しにくい、または膨張させにくい溶媒を選択することが重要である。
【0051】
共押出しによって形成される生体吸収性材料からなるステント装置の場合、様々な生体吸収性ポリマー材料を用いることができる。具体的には、様々なポリマーチューブまたはファイバーを押し出しするとほぼ同時に、ファイバーの場合はチューブまたはシースのための外層、ファイバーの場合はチューブおよびコアのための内層を形成する。融点が低い生体吸収性ポリマー材料を押し出して、シースまたは外面を形成する。このような融点の低い材料には、最終的に患者に送達するために薬物または他の生理活性物質を含めることができる。融点が高い材料およびその混合物を押し出して、シースによって覆われるコアすなわち内面を形成する。したがって、コアまたは内面を含む融点が高い材料は、ステントに強度を付与する。加工の際、例えばポリカプロラプトン(polycaprolactone)、ポリジオキサノン(polydioxanone)、およびそれらのコポリマーおよび混合物などの材料を含む融点が低い薬物を押し出すための温度は、60℃〜100℃と低くすることができる。さらに、この共押出し法によって形成される装置に付加する薬物または他の生理活性物質は、装置が押し出された後で装置にコーティングし、薬物または作用物質が、このような方法に関連した高温にさらされないようにする。したがって、加工の際の薬物の分解が最小限になる。放射線不透過性物質または他の添加物を、押し出しの最中または後に装置に含めることができる。
【0052】
混合ファイバー(co-mingled fibers)によって形成された生体吸収性ポリマー材料からなるステント装置の場合、様々な生体吸収性ポリマー材料を用いることもできる。上記した共押し出し技術とは対照的に、混合ファイバー技術では、各ファイバーを別個に押し出し、後に結合して所望のジオメトリのステントを形成する必要がある。別法では、同じ紡糸パック(spin pack)を用いて、1つのステップで、様々な紡糸孔から様々なファイバーを押し出してこれらを結合することもできる。様々な生体吸収性ポリマー材料は、薬物を混入する低融点の第1のファイバーと、高融点の第2のファイバーを含む。上記したように、放射線不透過性物質とポリマーおよび可塑剤などの他の添加物を、押し出しの最中または後に1または複数のファイバーに添加することができる。
【0053】
生体吸収性材料の溶融法または溶解法の際に生じうるいくつかの異なる形態の変型が存在する。半結晶ポリマーが溶液から生成される場合、溶媒が徐々に揮発するため、ポリマーは、完全に乾燥する前に、再結晶のための十分な時間が得られる。多成分混合系の場合には、相が分離するための十分な時間が得られるであろう。このような変化は、ポリマーの結晶化および相分離の周知の熱力学理論によって生じる。例えば、溶液から非晶質チューブまたはフィルムを形成するためには、運動によって結晶化および相分離の発生が防止されるように比較的短時間で溶媒を除去する必要があるであろう。例えば、PLGAチューブがジオキサン溶液から形成される場合、ほとんど非晶性のチューブを得るためには、チューブ成形工程の後、例えば60℃未満の低温で、例えば数分〜数時間の比較的短い時間で溶媒を除去する必要があるであろう。溶媒除去法が、例えば60℃を超える高温で、例えば6時間〜10時間の長い時間に亘って行われると、PLGAが結晶化し始めるであろう(最大10%〜20%の結晶度)。ポリマー混合物の場合は、物理特性が悪影響を受けないように、ポリマーの非晶質相間の良好な適合性が得られる非晶質系を有するのが好ましい。中空チューブ押出し法で、上記したようにポリマー溶液が沈殿または凝集すると、溶媒除去法が迅速であるため、ポリマーが結晶化することができず、得られるチューブは、ほとんど非晶質(1%〜5%の結晶度)であろう。
【0054】
溶融法の材料の場合、チューブまたはフィルムは、押出しダイから出た直後に急冷される。したがって、ポリマーは、一般に、冷却温度が材料のガラス転移温度よりも低いと結晶化しない。PLGAの場合、押出しチューブは、結晶度(1%〜5%)が極めて低いレベルである。このため、ポリマー混合物がこの方法で形成される場合、PLGAが好ましい。所定時間、ガラス転移温度と溶融温度との間で材料を焼きなますことにより、結晶化度が上昇する。例えば、PLGAチューブを、あらゆる収縮または座屈を防止する張力でマンドレルに取り付け、110℃で、3時間〜10時間焼きなますことができる。結晶化度は、約0%〜約35%または約45%に上昇する。したがって、この方法では、チューブ特性を、所望の形態および物理特性が得られるように変更することができる。
【0055】
素材(precursor material)(チューブおよびフィルムなど)におけるこのような形態の変型は、このような材料から形成される装置の性能を一定程度左右する。非晶質材料は、結晶材料に比べて、吸収が早く、靭性値が高く、物理的に老化し、寸法安定性が十分でないであろう。対照的に、結晶材料は、適合混合物を形成せず、吸収に時間がかかり、より剛性(靭性値は低い)であり、低いクリープや高い径方向強度などの優れた物理的な装置特性を有することができる。例えば、急冷状態(高次の非晶質形態)および除冷状態(高次の結晶形態)で機械的に試験した材料はそれぞれ、延性高変形特性および脆性特性を示す。このような性質は、異なる熱処理および履歴によって生じる結晶化度および形態の特徴における差異から生じる。装置表面の形態構造は、外腔面および/または内腔面にエネルギー処理(例えば、加熱)を施すことによって変更することができる。例えば、非晶質表面の形態は、様々な条件(温度/時間)下で焼きなまして結晶表面の形態に変換することができる。これにより、薬物溶出の制御、およびクラックの形成およびその拡散を防止する表面の靭性などのいくつかの利点が得られる結晶被膜または結晶層が装置に形成される。したがって、最適な性能を得るためには、装置の形成に用いる材料において、構造と特性と加工の関係をバランスさせることが重要である。
【0056】
本発明のステントおよび/または他の植え込み可能な医療装置は、純粋ポリマー、混合物、および複合材から形成することができ、薬物を含むステントを形成するために用いることができる。素材は、上記した任意の加工法によって形成されるチューブまたはフィルムとすることができ、レーザーカットまたは任意の他の適当な機械加工を行うことができる。このような素材は、様々な条件下で、急冷、焼きなまし、配向、または弛緩によって準備または変更することができる。別法では、レーザーカットステントを様々な条件下で急冷、焼きなまし、配向、または弛緩によって形成または改変することができる。
【0057】
力学的配向
ステントまたは装置におけるポリマーの配向の効果により、径方向の強度、反動、および柔軟性を含む装置の性能を改善することができる。また、配向により、ステントの分解時間を変更することができ、所望に応じて、ステントの異なる部分を異なるように配向することができる。配向は、軸方向、外周方向、または径方向、および単位格子および可撓性連結部の任意の他の方向に沿うようにして、これらの方向におけるステントの性能を向上させることができる。配向は、一方向(単軸)、二方向(二軸)、および/または多方向(多軸)に制限することができる。配向は、初めに軸方向に沿い、次に径方向に沿うか、またはその逆などの異なる順序で所定の材料に導入することができる。別法では、材料を、同時に両方向に配向することができる。軸方向の配向は、通常はポリマーのガラス転移温度よりも高い温度で、チューブまたはフィルムなどの所定の材料の軸方向すなわち長さ方向に沿って延ばして導入することができる。径方向または周方向の配向は、例えば窒素などの加熱ガスによって材料を膨張させる、または型の内部のバルーンを用いるなどのいくつかの異なる方法で導入することができる。別法では、異方性特性を得るために、様々な方向に配向された材料の層を積み重ねて複合またはサンドイッチ構造を形成することができる。吹込み成形を用いて、二軸配向および/または多軸配向を導入することができる。
【0058】
約1%〜50%の範囲の薬物を含むチューブ、フィルム、または他の構造に配向を導入することができる。例えば、上記した任意の加工法によって形成された薬物を含むPLGAチューブを、約70℃で、様々な延伸速度(例えば、100mm/分〜1000mm/分)で、様々な程度(例えば、50%〜300%)配向させることができる。材料を延伸するための条件は、薬物の存在により生じうる過度のフィブリル化および空隙生成を防止する際に重要である。延伸温度を高い値(例えば、90℃)に上げると、配向温度がPLGAのガラス転移温度(約60℃)よりもかなり高くなるため、配向が維持されず、冷却時にポリマー鎖が緩むであろう。
【0059】
材料を配向させる他の方法の例として、中間の制御された焼きなましおよび弛緩ステップの前または後に、異なる温度および異なる延伸速度で装置または材料を延伸する多段階延伸加工を含むことができる。この方法により、材料が高い延伸率に耐える限度により、1回のステップの延伸では通常は不可能である所定の材料の全延伸率を上げることができる。配向、焼きなまし、および弛緩のこれらのステップにより、材料の全体の強度および靭性を改善することができる。
【0060】
ポリマー材料
ポリマー材料は、合成ポリマー、天然ポリマー、および/またはこれらの混合物に大きく分類することができる。この大きな分類では、材料は、生物学的安定性または生体分解性と定義することができる。生物学的安定性ポリマーの例として、ポリオレフィン、ポリアミド、ポリエステル、フルオロポリマー(fluoropolymers)、およびアクリルなどを挙げることができる。天然ポリマーの例として、ポリサッカリド(polysaccharides)およびタンパク質を挙げることができる。
【0061】
本発明のシステムおよび方法に従った薬物送達装置は、疾患用であるが、局所治療、広域治療、またはこれらの組合せのためにデザインすることができる。このような薬物送達装置を用いて、脆弱なプラーク、再狭窄、分岐した病変、表在大腿動脈、膝の下側の伏在静脈グラフト(below the knee, saphenous vein graft)、動脈幹(arterial tree)、細い蛇行した血管、および拡散した病変などの環動脈疾患および抹消血管疾患を治療することができる。本発明のシステムおよび方法に従った薬物送達装置によって送達される薬物または他の作用物質は、1または複数の薬物、成長因子または他の作用物質などの生理活性物質、またはこれらの組合せとすることができる。装置の薬物または他の作用物質は、理想的には装置から制御可能に放出される。放出の速度は、装置を構成する生体吸収性ポリマーの分解速度、および薬物または他の作用物質の性質の一方または両方によって決まる。したがって、放出速度は、所望に応じて数分から数年と様々にすることができる。
【0062】
生体吸収性および/または生体分解性ポリマーは、バルクおよび表面侵食材料からなる。表面浸食ポリマーは通常、結合が水で不安定となる疎水性である。このような表面浸食ポリマーの表面に対しては、加水分解が迅速に進む傾向にあり、バルクポリマーでは水が浸透しない。このような表面浸食ポリマーの初めの強度は低い傾向にあるが、このような表面浸食ポリマーは、入手が困難な場合が多い。そうは言っても、表面浸食ポリマーの例として、ポリ(カルボキシフェノキシへキサン‐セバシン酸)(poly (carboxyphenoxy hexane-sebacic acid))、ポリ(フマル酸‐セバシン酸)(poly (fumaric acid-sebacic acid))、ポリ(イミド‐セバシン酸)(50‐50)(poly (imide-sebacic acid)(50-50))、ポリ(イミド‐カルボキシフェノキシへキサン)(33‐67)(poly (imide-carboxyphenoxy hexane) (33-67))、およびポリオルトエステル(ジケテンアセタール系ポリマー)(polyorthoesters (diketene acetal based polymers))などのポリ無水物(polyanhydrides)を挙げることができる。
【0063】
他方、バルク浸食ポリマーは通常、結合が水で不安定となる親水性(hydrophilic with water labile linkages)である。バルク浸食ポリマーの加水分解は、装置のポリマー基質全体でより均一な速度で進む傾向にある。バルク浸食ポリマーは、優れた最初の強度を有し、容易に入手可能である。
【0064】
バルク浸食ポリマーの例として、ポリ(乳酸)、ポリ(グルコール酸)(poly (glycolic acid))、ポリ(カプロラクトン)(poly (caprolactone))、ポリ(p‐ジオキサノン)(poly (p-dioxanone))、ポリ(トリメチレンカーボネート)(poly (trimethylene carbonate))、ポリ(オキサエステル)(poly (oxaesters))、ポリ(オキサアミド)(poly (oxaamides))、これらのコポリマーおよび混合物などのポリ(α‐ヒドロキシエステル)(poly (α-hydroxy esters))を挙げることができる。一部の容易に入手可能なバルク浸食ポリマーおよびそれらの一般的な医療用途には、ポリ(ジオキサノン)(poly (dioxanone))[ニュージャージー州ソマービル(Somerville)に所在のエシコン社(Ethicon, Inc.)が販売するPDS(登録商標)縫合糸]、ポリ(グリコリド)(poly (glycolide))[コネチカット州ノース・ハーベン(North Haven)に所在のユナイテッド・ステイツ・サージカル社(United States Surgical Corporation)が販売するDexon(登録商標)縫合糸]、ポリ(ラクチド)-PLLA(poly (lactide)-PLLA)[骨修復]、ポリ(ラクチド/グリコリド)(poly (lactide/glycolide))[ニュージャージー州ソマービル(Somerville)に所在のエシコン社(Ethicon, Inc.)が販売するVicryl(登録商標)(10/90)縫合糸およびPanacryl(登録商標)(95/5)縫合糸]、ポリ(グリコリド‐カプロラクトン(75/25))(poly (glycolide/caprolactone) (75/25))[ニュージャージー州ソマービル(Somerville)に所在のエシコン社(Ethicon, Inc.)が販売するMonocryl(登録商標)縫合糸]、およびポリ(グリコリド/トリメチレンカーボネート)(poly (glycolide/trimethylene carbonate))[コネチカット州ノースハーベン(North Haven)に所在のユナイテッド・ステイツ・サージカル社(United States Surgical Corporation)が販売するMaxon(登録商標)縫合糸]が含まれる。
【0065】
他のバルク浸食ポリマーは、チロシン由来ポリアミノ酸[例:ポリ(DTHカーボネート)(poly (DTH carbonates))、ポリ(アクリレート)(poly (arylates))、およびポリ(イミノ‐カーボネート)(poly (imino-carbonates))]、リン酸含有ポリマー[例:ポリ(ホスホエステル)(poly (phosphoesters))およびポリ(ホスファゼン)(poly (phosphazenes))]、ポリ(エチレングリコール)[PEG]系ブロックコポリマー[PEG‐PLA、PEG‐ポリ(ポリプロピレングリコール)(PEG-poly (propylene glycol))、PEG‐ポリ(ブチレンテレフタレート)(PEG-poly (butylene terephthalate))]、ポリ(α‐りんご酸)(poly (α -malic acid))、ポリ(エステルアミド)(poly (ester amide))、およびポリアルカノエート(polyalkanoates)(polyalkanoates)[例:ポリ(ヒドロキシブチレート)(HB)(poly (hydroxybutyrate (HB))およびポリ(ヒドロキシバレレート)(HV)(poly (hydroxyvalerate) (HV))コポリマー)]である。
【0066】
もちろん、本装置は、所望の物理特性を得るため、および分解機構を制御するために、表面浸食ポリマーとバルク浸食ポリマーを組み合わせて形成することができる。例えば、所望の物理特性および装置分解速度を得るために、2種以上のポリマーを混合することができる。別法では、この装置は、表面浸食ポリマーでコーティングされたバルク浸食ポリマーから形成することができる。薬物送達装置は、薬物含有表面浸食ポリマーでコーティングされたバルク浸食ポリマーから形成することができる。例えば、薬物コーティングは、多量の薬物を含有できる十分な厚みを有することができ、バルク浸食ポリマーは、たとえ全ての薬物が送達されて表面が浸食されたとしても、装置の機械特性が維持されるように十分に厚く形成することができる。
【0067】
形状記憶ポリマーも用いることができる。形状記憶ポリマーは、硬質部分と軟質部分を有する相分離線形ブロックコポリマーとして特徴付けられる。硬質部分は通常、特定の融点を有する結晶質であり、軟質部分は通常、特定のガラス転移温度を有する非晶質である。軟質部分のガラス転移温度は、形状記憶ポリマーにおける硬質部分のガラス転移温度よりも実質的に低い。形状記憶ポリマーにおける形状は、加熱および冷却技術によって形状記憶ポリマーの硬質部分および軟質部分に記憶される。形状記憶ポリマーは、熱安定性かつ生体吸収性とすることができる。生体吸収性形状記憶ポリマーは、比較的新しいものであり、熱可塑性材料および熱硬化性材料を含む。形状記憶熱硬化性材料は、ポリ(カプロラクトン)ジメチルアクリレート(poly (caprolactone) dimethylacrylates)を含むことができ、形状記憶熱可塑性材料は、軟質部分としてポリ(カプロラクトン)および硬質部分としてポリ(グリコリド)を含むことができる。
【0068】
本発明に従った薬物送達装置を含めるために用いられる生体吸収性ポリマー材料の選択は、例えば、生体吸収性材料の所望の吸収時間および物理特性、ならびに薬物送達装置のジオメトリを含む多数の因子によって決まる。
【0069】
特性/混合物
系の靭性は、破壊するために必要な機械エネルギーすなわち仕事であり、温度および荷重速度などの試験条件によって異なる。靭性は、作成した応力‐歪み曲線の下側の領域であるため、所定の材料の最終特性である。このため、正確な靭性値を得るためには、試験品の大きい集団からデータを得るのが重要である。ポリマーの靭性は、いくつかの異なるカテゴリーに属する。硬い脆性材料は、破壊値で弾性率が高く歪みが小さいため靭性が低い。硬い靭性材料は、破壊値で弾性率が高く歪みが大きいため靭性が高い。同様に、軟らかい脆性材料は、破壊値で弾性率が低く歪みが小さいため靭性が低い。軟らかい靭性材料は、破壊値で弾性率が低く歪みが大きいため靭性が高い。理想的には、薬物を含むステントなどの血管装置では、破壊値で弾性率が高く歪みが大きいすなわち最終歪み値が大きい靭性の高い材料を有するのが望ましい。
【0070】
機械ヒステリシスは、周期的な変形の際に喪失するエネルギーであり、血管ステント内などでポリマーに動的負荷がかかる際の重要な因子である。ポリマーは、粘弾性材料であるため、周期的な変形の際にエネルギーがロスしない弾性材料とは異なり、機械ヒステリシスを有する。機械ヒステリシスの程度すなわちパーセントは、ポリマーのタイプによって決まる。例えば、エラストマーは、硬くて脆い非エラストマー材料に比べて、機械ヒステリシスのパーセンテージが低いであろう。また、非エラストマー材料は、変形した状態で負荷を除去すると、永久変形するであろう。
【0071】
整形外科インプラント、縫合糸、ステント、グラフト、および薬物送達装置を含む他の医療用途に必要な場合が多いため、靭性の高い材料を提供するべく、生体吸収性ポリマー材料を、これらの複合材または混合物を形成するために改変することができる。このような複合材または混合物は、ポリマー主鎖の化学構造を変更するか、または様々なポリマーおよび可塑剤と混合して複合構造を生成して達成することができる。
【0072】
通常は分子量の小さい材料である可塑剤または軟質(ガラス転移温度が低い)の混和性ポリマーの添加により、基質ポリマー系のガラス転移温度が下がる。一般に、基礎となる生体吸収性ポリマーを改変するために用いられるこのような添加材料は、好ましくは、有効となるように主な基質ポリマー系と混和性にすべきである。
【0073】
本発明に従えば、薬物を含むまたは薬物を含まないステントまたは装置の準備として、混合物を生成するべく適当なポリマーまたはその混合物と可塑剤またはその混合物を調和させることが、所望の特性を達成するのに重要である。ポリマーと可塑剤の化合は、所望の範囲内でポリマー成分の可溶性パラメータと可塑剤成分の可溶性パラメータとを一致させて行うことができる。様々な材料の可溶性パラメータおよびこれを計算するための方法は当分野で周知である。化合物の合計可溶性パラメータは、分散の力、水素結合の力、および極性力が寄与する可溶性パラメータ値の合計である。ポリマーは、可塑剤に溶解させるか、または各ポリマーおよび可塑剤の合計可溶性パラメータかまたは分散の力、極性力、および水素結合の力の1つまたは複数が類似している場合は可塑化する。
【0074】
自由体積は、分子間の空間であり、分子の運動が大きくなると増大する。したがって、自由体積の不釣合いな程度は、ポリマー系におけるポリマー鎖末端基が関係する。ポリマー鎖末端基の濃度が増大すると、自由体積が増大する。したがって、可撓性の側鎖を巨大分子内に付加すると、自由体積が増大する。全てのこれらの効果を、内部の可塑化に用いることができ、自由体積が、ポリマー分子に対して空間的に固定される。しかしながら、小分子の付加により、添加された材料の量によって任意の位置で巨大分子の自由体積に影響を及ぼす。これは、外部可塑化として知られている。添加される分子の大きさおよび形状、ならびにその原子の性質および原子の基(すなわち、非極性、極性、水素結合など)により、可塑剤としていかに機能するかが決まる。ポリマーの自由体積を増大させる通常の効果は、ポリマーが可塑化される(すなわち、ガラス転移温度が下がり、弾性率および引張り強さが低下し、破壊時の伸張率および靭性が増大する)ことである。しかしながら、可塑剤によって得られる運動の自由により、ポリマー分子が互いに密に結合することができる。一般に、自由体積は、適当な可塑剤がポリマーの自由体積を増大させるという原理に基づいている。ポリマーの自由体積の増大により、ポリマーの可動性、従って可塑化の範囲が増大する。したがって、より多くの可塑化が望ましい場合、可塑剤の量を増大させることができる。
【0075】
図2は、曲線204によって示す、可塑化された硬質で脆性のある材料の応力‐歪み挙動の模式的なグラフである。曲線202によって示されている硬い脆性ポリマー材料は、可塑剤の添加によって改変される。硬い材料は、破壊値で小さい歪みおよび高い弾性率を有し、曲線の下側の領域が小さいため、靭性が低い。可塑剤を添加すると、硬い脆性材料が、硬い靭性材料になる。言い換えれば、可塑剤の添加により、ある程度弾性率が低下するが、最終的な歪み値が増大し、このため可塑化された材料の靭性が高くなる。上記したように、曲線204は、硬い脆性ポリマーと可塑剤との混合物が応力‐歪み曲線が改善された材料となっていることを示している。弾性率および靭性の変化の程度は、ポリマーにおける可塑剤の量によって決まる。一般に、可塑剤の量が多ければ、弾性率が低くなり、靭性値が高くなる。
【0076】
生体吸収性ポリマー材料の基質に添加される可塑剤は、装置をより柔軟にし、処理する材料が溶融している場合、通常は処理温度が下がる。可塑剤は、処理の前または最中に装置の生体吸収性材料に添加する。この結果、処理の際に可塑剤が添加された、生体吸収性材料に含められた薬物の分解がさらに減少する。
【0077】
本発明に使用するのに適した可塑剤またはその混合物は、有機可塑剤、および有機化合物を含まない水のような可塑剤を含め、様々な材料から選択することができる。有機可塑剤の例として、限定するものではないが、ジメチルフタレート、ジエチルフタレート、およびシブチルフタレート(dimethyl, diethyl and dibutyl phthalate)などのフタレート誘導体;好ましくは分子量が約200〜6000のポリエチレングリコール、グリセロール、ポリプロピレングリコール、ポリピレングリコール、ポリエチレングリコール、およびエチレングリコールなどのグリコール;クエン酸トリブチル、クエン酸トリエチル、クエン酸トリアセチル、アセチルクエン酸トリエチル、およびアセチルクエン酸トリブチルなどのクエン酸エステル(citrate esters such as tributyl, triethyl, triacetyl, acetyl triethyl, and acetyl tributyl citrates)、ドデシル硫酸ナトリウム(sodium dodecyl sulfate)およびポリオキシメチレン(20)ソルビタン(polyoxymethylene (20) sorbitan)およびポリオキシエチレン(20)ソルビタンモノオレアート(polyoxyethylene (20) sorbitan monooleate)などの界面活性剤、1,4‐ジオキサン(1,4-dioxane)、クロロホルム、エタノール、およびイソプロピルアルコール(isopropyl alcohol)などの有機溶媒、およびアセトンや酢酸エチルなどの他の溶媒とのこれらの混合物、酢酸および乳酸およびこれらのアルキルエステルなどの有機酸、ソルビトール(sorbitol)、マンニトール(mannitol)、キシリトール、およびリカシン(lycasin)などのバルク甘味料、植物性油脂、種油、およびヒマシ油などの脂肪/油、アセチル化モノグリセリド(acetylated monoglyceride)、トリアセチン(triacetin)、スクロースエステル(sucrose esters)、またはそれらの混合物を挙げることができる。好適な有機可塑剤の例として、クエン酸エステル、ポリエチレングリコール、およびジオキサノンを挙げることができる。
【0078】
クエン酸エステルは、クエン酸、三塩基一価酸(tribasic monohydroxy acid)(2‐ヒドロキシ‐1,2,3‐プロパントリカルボキシル酸(2-hydroxy-1, 2, 3-propanetricarboxylic acid))、C687、および植物と動物の天然成分および一般代謝産物に由来する再生可能な資源の誘導体である。これらは、非毒性であり、様々なポリマーに可塑剤として用いられている。様々なグレードのクエン酸エステルが、モーフレックス社(Morflex, Inc.)から入手可能である。通常の分子量が270〜400g/モル、融点が125℃〜175℃、水溶性が0.1〜6.5g/100mL、可溶性パラメータが18〜20(J/cm31/2である。分子量は、全ての特性に大きな影響を及ぼす。分子量が大きくなると、沸点が上昇し、水溶性および可溶性パラメータが低下するため、分子は、その極性が低下する。
【0079】
ポリエチレングリコールは、水溶性であり、分子量が200〜20,000g/モルの範囲である。分子量が増大すると、可溶性が低下する。このような材料はまた、クロロホルムおよびアセトンなどの極性有機溶媒に溶解する。このようなポリマーは、いくつかの供給者から容易に入手可能である。
【0080】
ジオキサンおよびクロロホルムなどの溶媒の可溶性パラメータ値はそれぞれ、約20MPa1/2および19MPa1/2であり、ポリ(乳酸‐コグリコール酸)などの生体吸収性材料の良好な溶媒の一種と考えられる。したがって、このような材料の可溶性パラメータは、溶媒の可溶性パラメータに近いはずであると考えられる。
【0081】
クエン酸エステル可塑剤は、薬物および/または放射線不透過性物質の存在下で、1wt%〜50wt%、好ましくは1wt%〜35wt%、より好ましくは1wt%〜20wt%、溶液中または溶融状態の生体吸収性ポリマーに添加することができる。生体吸収性ポリマーは、ポリ(乳酸‐コグリコール酸)(95/5〜85/15の比率)から選択することができ、放射線不透過性物質は、硫酸バリウム(好ましくは10%〜50%の範囲)であり、薬物は、シロリムス(sirolimus)(好ましくは1%〜30%の範囲)である。これらは、上記した任意の加工法によってチューブまたはフィルムにすることができる。このポリマー系の破壊値での伸張率は、1%〜20%の可塑剤の添加で20%超増大する。これは、靭性の相当な向上を示し、歪みの大きいバルーン拡張型ステントデザインに極めて好ましい。
【0082】
ポリマー混合物は、所望の最終ポリマー特性を得るために普通に調製される。本発明に従えば、ポリマー混合物は、破壊値での伸張率すなわち最終歪みを増大させて、ステントなどの血管装置の形成に用いられる材料の靭性を改善するために調製される。基質ポリマーの高い靭性値を得るためには、材料の選択が重要である。可溶性パラメータの一致および自由体積の増大が、所望の性能を達成するためにポリマー混合物にとって重要である。基質ポリマーへの可塑剤の添加とポリマーの添加との主な差は、分子量の差である。上記したように、可塑剤は、ポリマー添加物に比べて分子量が小さい。しかしながら、一部の低分子ポリマーも可塑剤として用いることもできる。ポリマー添加物に比べて少ない量の可塑剤を添加して、高い靭性値を得ることも可能である。比較的分子量の大きい材料が、本発明の基質材料として用いられる。例えば、PLGA樹脂の分子量(平均分子量)は、300,000ダルトン超とすることができる。熱力学的に、分子量は、ポリマー系の混和性に大きな役割を果たす。低分子量添加物とポリマーとの混和性は、高分子量添加物に比べて高い。上記したように、混和性ポリマーを添加することにより、ガラス転移温度が下がり、弾性率および引張り強さが低下し、靭性値が上昇する。
【0083】
図3は、曲線302で示されている、弾性率が高く、破壊値での歪みが小さいすなわち靭性の低い硬い脆性材料と、曲線304で示されている、破壊値で弾性率が低く歪みが比較的大きい軟らかいエラストマー材料と、曲線306で示されている、これらの2つの材料から調製して得られる、最終的な歪みが大きいすなわち靭性の高い比較的硬質なポリマー混合物の応力‐歪み挙動の模式的なグラフである。破壊値での弾性率、強度、および歪みの変化の程度は、基質ポリマーに添加されるポリマーの量によって決まる。一般に、ポリマーは、低いレベル(例えば、50wt%未満)の添加物では混和性すなわち相溶性である。この低いレベルを超えると、ポリマーは、相が分離し、物理特性が悪化し始める。しかしながら、生体吸収性相溶化剤の添加によって相分離ポリマー間の所望の適合性を得ることが可能であることに留意されたい。
【0084】
複合材料すなわち混合材料を生成する一例では、ポリ(乳酸)、ポリ(グリコリド)、およびポリ(ラクチド‐コグリコリド)コポリマーなどの硬質ポリマーとポリ(カプロラクトン)およびポリ(ジオキサノン)などの軟質の弾性ポリマーとを混合すると、靭性が高く剛性が高い材料が生成される傾向にある。弾性コポリマーは、硬質ポリマーと軟質ポリマーから様々な比率で合成することもできる。例えば、ポリ(グリコリド)またはポリ(ラクチド)は、ポリ(カプロラクトン)またはポリ(ジオキサノン)と共重合させて、ポリ(グリコリド‐コカプロラクトン)(poly (glycolide-co-caprolactone))またはポリ(グリコリド‐コジオキサノン)(poly (glycolide-co-dioxanone))およびポリ(ラクチド‐コカプロラクトン)(poly (lactide-co-caprolactone))またはポリ(ラクチド‐コジオキサノン)コポリマーを生成することができる。次に、これらの弾性コポリマーを、ポリ(ラクチド)、ポリ(グリコリド)、およびポリ(ラクチド‐コグリコリド)コポリマーなどの硬質材料と混合して、靭性が高く延性の材料を生成することができる。別法では、ターポリマー(terpolymers)を、所望の特性を得るために様々なモノマーから生成することもできる。例えば、ポリ(カプロラクトン‐コグリコリド‐コラクチド)(poly (caprolactone-co-glycolide-co-lactide))は、様々な比率で生成することができる。
【0085】
基質ポリマーの好適な材料は、通常は硬い脆性のポリ(乳酸‐コグリコール酸)(95/5および85/15)である。基質ポリマーに添加するポリマーの好適な柔らかいエラストマー材料は、ポリ(カプロラクトン);ポリ(ジオキサノン);ポリ(カプロラクトン)とポリ(ジオキサノン)のコポリマー;およびポリ(カプロラクトン)とポリ(グリコリド)のコポリマーである。コポリマーに対するモノマー成分の比率は、約95/5〜約5/95の範囲とすることができる。好ましくは、この比率は、ポリ(カプロラクトン)/ポリ(ジオキサノン)コポリマーに対しては約95/5〜約50/50であり、ポリ(カプロラクトン)/ポリ(グリコリド)コポリマーに対しては約25/75〜約75/25の範囲である。基質ポリマーに対するこれらのポリマーの添加は、1wt%〜50wt%、より好ましくは5wt%〜35wt%の範囲とすることができる。これら混合物は、シロリムス(sirolimus)などの多量の薬物(1%〜30%)および硫酸バリウムなどの放射線不透過性物質(10%〜50%)を含むのが好ましく、溶融法または溶解法で生成することができる。
【0086】
軟質ポリマーの添加で靭性値を上げるのに加えて、吸収時間も変更することができる。例えば、PLGAとポリカプロラクトンとの混合物は、ポリカプロラクトンがPLGAよりも分解速度が遅いため、この混合材料の合計吸収時間が延びる。この合計吸収時間は、PLGAを、分解速度の速いポリ(ジオキサノン)、ポリ(ジオキサノン)とポリ(グリコリド)およびポリ(ラクチド)とのコポリマー、およびポリ(カプロラクトン‐コグリコリド)などのポリ(グリコリド)のコポリマーなどの材料と混合してPLGAに対して短縮することができる。
【0087】
可塑剤または軟質材料の存在下で、弾性率の高いPGAファイバーまたは生体吸収性粒状充填材とPLGAを混合して複合材を生成し、最終材料の弾性率を改善して強化複合材を生成することもできる。
【0088】
薬物または他の生理活性物質が含められている生体吸収性材料の融点よりも融点が低いポリマーの溶融混合物を、装置を構成する生体吸収性材料に添加することもできる。融点が低いポリマーの混合物を添加することにより、処理温度が下がり、薬物または作用物質の分解が最小限になる。
【0089】
十分な濃度の薬物または治療薬を、ポリマーの特性を変更するために添加剤として用いることができることに留意されたい。言い換えれば、薬物または治療薬は、治療効果を付与するのに加えて、ここに記載した混合物と同様に所望の最終製品の特性を得るべく、基材に付加する材料としてではなく、混合物の一部として用いることができる。
【0090】
添加物
患者に植え込まれた装置の視覚化が、その装置の位置を確認する際に医師にとって重要であるため、放射線不透過性材料を装置に添加することができる。放射線不透過性材料は、加工の際に装置を構成する生体吸収性材料の基質に直接添加して、装置全体に放射線不透過性材料を均一に含めることができる。別法では、放射線不透過性材料を、装置のジオメトリと装置の形成に用いる加工法によって、装置の特定の部分に層、コーティング、バンド、または粉末の形態で添加することができる。コーティングは、例えば、化学蒸着(CVD)、物理蒸着(PVD)、電気メッキ、高真空蒸着法、微小融合(microfusion)、スプレーコーティング、浸漬コーティング、静電塗装、あるいは、他の表面コーティング、または改良された技術などの当分野で周知の様々な方法で装置に付加することができる。このようなコーティングは、時に、他の技術に比べて、装置の物理特性(例えば、大きさ、重さ、剛性、可撓性)および性能に対する負の影響が少ない。放射線透過性材料は、配置される解剖学的構造内に装置が容易に移動できるように、この装置に著しい剛性を付与しないのが好ましい。放射線不透過性材料は、装置が配置される組織に対して生体適合性とすべきである。このような生体適合性により、組織と装置の不所望の反応が起こる可能性が最小限になる。金、プラチナ、イリジウム、パラジウム、およびロジウムなどの不活性貴金属は、よく知られている生体適合性放射線不透過性材料である。他の放射線不透過性材料の例として、硫酸バリウム(BaSO4)、次炭酸ビスマス((BiO)2CO3)、および酸化ビスマスを挙げることができる。このような放射線不透過性材料は、装置によく付着するため、放射線不透過性材料を装置から剥がすのは最小限に留めるのが好ましく、剥がさないのが理想的である。放射線不透過性材料を金属バンドとして装置に付加する場合、金属バンドを装置の指定の部分にクリンプすることができる。別法では、装置の指定部分を、放射線不透過性金属粉末でコーティングし、装置の他の部分には、放射線不透過性金属粉末をコーティングしない。
【0091】
本発明に従った薬物送達装置を含む生体吸収性ポリマー材料は、装置の放射線不透過性を向上させるべく、生体吸収性ポリマー材料の基質の処理中に直接添加する放射線不透過性添加物を含むことができる。放射線不透過性添加物の例として、硫酸バリウム、次炭酸ビスマス、酸化ビスマス、および/またはヨウ素化合物などの無機充填材を含むことができる。放射線不透過性添加物は、代わりに、タンタル、タングステン、または金などの金属粉末、あるいは金、プラチナ、イリジウム、パラジウム、ロジウム、これらの組合せ、または当分野で周知の他の材料を有する金属合金を含むことができる。放射線不透過性材料の粒子の大きさは、ナノメーターからミクロンの範囲とすることができ、より好ましくは約1μm以下から約5μmまでであり、放射線不透過性材料の量は、0wt%〜99wt%の範囲とすることができる。
【0092】
放射線不透過性材料が生体吸収性材料の基質全体に分散すると、放射線不透過性添加物の密度が、通常は極めて高くなるため、所望に応じて、分散技術を利用して、放射線不透過性添加物を生体吸収性材料全体に分散させるのが好ましい。このような技術の例として高剪断混合(high shear mixing)、界面活性剤および潤滑剤の添加、粘度の制御、添加物の表面の改変、および他の粒子の大きさ、形状、および分散の技術を挙げることができる。これに関して、放射線不透過性材料は、装置の生体吸収性材料全体に均一に分布させるか、または上記と同様にマーカーと見えるように装置の特定の部分に集中させることもできることを理解されたい。
【0093】
ポリマーチューブは、例えば、放射線不透過性材料が、ポリマーチューブ中に完全に分散するか、または特定の部分にのみ選択的に分散するように形成することができる。例えば、チューブの両端部のみを、高濃度の放射線不透過性物質とすることができる。異なる加工法を用いて、このようなマーカーを形成することもできる。ある方法では、チューブの端部に小さな孔または溝を穿孔するかレーザーカットし、その孔の中に放射線不透過性物質を充填して、ポリマーでコーティングする。別の方法では、チューブを用意し、溶解法で形成する場合は、チューブとマーカーバンドが完全に乾燥していない状態で、超音波溶接、境界部における局所加熱、ポリマー溶液を用いた接着、または、融着などの方法によって端部にチューブマーカーバンドを取り付けることができる。このような方法の利点は、放射線不透過性物質が含められていないチューブの任意の位置にマーカーバンドを付加すなわち取り付けることができる点である。
【0094】
治療薬と治療薬の組合せの局所送達を利用して、様々な医療装置を用いて広範な症状を治療する、または装置の機能および/または寿命を改善することができる。例えば、白内障外科手術後の視力回復のために配置された眼内レンズは、続発性白内障の発症によって機能が阻害される場合が多い。続発性白内障は、レンズ表面における細胞の過剰な成長によって起こる場合が多く、1または複数の薬物を装置に組み合わせて最小限にすることが可能である。水頭症用のシャント、透析用グラフト、結腸フィステル形成術バック取付け装置、耳だれ排出チューブ、ペースメーカーのリード線、および植え込み可能な除細動器などの装置の内部、表面、および周囲における組織の成長またはタンパク様物質の蓄積によって機能しなくなる場合がある他の医療装置も、装置と薬物を組み合わせる方法によって恩恵を受けることができる。組織または器官の構造および機能を改善する役割を果たす装置も、1または複数の適当な作用物質と組み合わせて、恩恵を受けることができる。例えば、植え込まれた装置の安定性を向上させる整形外科装置の改善された骨内への埋込みを、骨形成タンパク質などの物質と組み合わせて達成することが可能である。同様に、他の外科装置、縫合糸、ステープラ、吻合装置、椎骨円板、骨ピン、縫合糸アンカー、止血バリア、クランプ、ねじ、プレート、クリップ、血管インプラント、組織接着材およびシーラント、組織足場、様々なタイプの包帯、骨代用品、ステント、ステントグラフトおよび動脈瘤を修復するための他の装置を含む腔内装置、および血管支持体も、このような薬物装置の組合せ法によって患者に恩恵をもたらすであろう。脈管周囲のラップは、特に有利であり、単独または他の医療装置と組み合わせることができる。脈管周囲のラップは、治療部位に追加の薬物を供給することができる。本質的に、任意の他のタイプの医療装置を、特定の方法で薬物または薬物の組合せでコーティングすることで装置または医薬を単独で使用するよりも治療効果を上げることができる。
【0095】
様々な医療装置に加えて、このような装置のコーティングを用いて、治療薬および医薬品を送達することができる。このような治療薬および医薬品の例として、ビンカアルカロイド(すなわち、ビンブラスチン、ビンクリスチン、およびビノレルビン(vinorelbine))、パクリタキセル、エピジポドフィロトキシン(epidipodophyllotoxins)(すなわち、エトポシド、テニポシド(teniposide))、抗生物質(ダクチノマイシン(アクチノマイシンD)、ダウノルビシン、ドキソルビシン、およびイダルビシン(idarubicin))、アントラサイクリン(anthracyclines)、ミトキサントロン、ブレオマイシン、プリカマイシン(ミトラマイシン)、マイトマイシン、および酵素(L‐アスパラギンを全身的に代謝して、自身のアスパラギンを合成できない細胞を除去するL‐アスパラギナーゼ)などの天然産物を含む抗炎症/細胞分裂抑制剤;G(GP)IIb/IIIa阻害剤およびビトロネクチン受容体拮抗薬などの血小板凝集阻害剤;ナイトロジェンマスタード(メクロレタミン、シクロホスファミドおよび類似体、メルファラン、クロランブシル(chlorambucil))、エチレンイミンおよびメチルメラミン(methylmelamines)(ヘキサメチルメラミン(hexamethylmelamine)およびチオテパ)、アルキルスルホン酸‐ブスルファン(alkyl sulfonates-busulfan)、ニトロソウレア(nirtosoureas)(カルムスチン(BCNU)および類似体、ストレプトゾシン)、トラゾドン‐ダカルバジニン(trazenesdacarbazinine)(DTIC)などの抗炎症/細胞分裂抑制アルキル化剤;葉酸類似体(メトトレキセート)、ピリミジン類似体(フルオロウラシル、フロクスウリジン、およびシタラビン)、プリン類似体、および関連阻害剤(メルカプトプリン、チオグアニン、ペントスタチン(pentostatin)、および2‐クロロデオキシアデノシン(2-chlorodeoxyadenosine){クラドリビン(cladribine)})などの抗炎症/細胞分裂抑制代謝拮抗剤;プラチナ錯体複合体(platinum coordination complexes)(シスプラチン、カルボプラチン)、プロカルバジン、ヒドロキシ尿素、ミトタン(mitotane)、アミノグルテチミド;ホルモン(すなわち、エストロゲン);血小板凝集阻害剤(ヘパリン、合成ヘパリン塩、およびトロンビンの他の阻害剤);フィブリン溶解酵素薬(組織プラスミノゲンアクチベータ、ストレプトキナーゼ、およびウロキナーゼなど)、アスピリン、ジピリダモール、チクロピジン、クロピドグレル(clopidogrel)、アブシキマブ(abciximab);抗遊走剤(antimigratory);抗分泌剤(antisecretory)(ブレベルディン(breveldin));副腎皮質ステロイド(コルチゾル(cortisol)、コルチゾン(cortisone)、フルドロコルチゾン(fludrocortisone)、プレドニゾン(prednisone)、プレドニゾロン(prednisolone)、6α‐メチルプレドニゾロン(6α-methylprednisolone)、トリアムシノロン(triamcinolone)、ベタメタゾン(betamethasone)、およびデキサメサゾン(dexamethasone))、非ステロイド剤(サリチル酸誘導体すなわちアスピリン;パラ‐アミノフェノール誘導体すなわちアセトアミノフェン;インドールおよびインデン酢酸(indene acetic acids)(インドメタシン、スリンダク、およびエトドラク(etodalec))、ヘテロアリール酢酸(heteroaryl acetic acids)(トルメチン、ジクロフェナク、および、ケトロラク(ketorolac))、アリールプロピオン酸(arylpropionic acids)(イブプロフェンおよび誘導体)、アントラニル酸(メフェナム酸およびメクロフェナム酸(meclofenamic acid))、エノール酸(enolic acids)(ピロキシカム、テノキシカム(tenoxicam)、フェニルブタゾン、およびオキシフェンタトラゾン(oxyphenthatrazone))、ナブメトン(nabumetone)、金化合物(オーラノフィン、金チオグルコース、金チオリンゴ酸ナトリウム(gold sodium thiomalate))などの抗炎症薬;免疫抑制剤:(シクロスポリン、タクロリムス(FK‐506)、シロリムス(sirolimus)(ラパマイシン)、アザチオプリン、マイオフェノレートモフェチル(mycophenolate mofetil));血管形成剤(angiogenic agents):血管内皮成長因子(VEGF)、線維芽細胞成長因子(FGF);アンギオテンシン受容体遮断薬;硝酸供与体、アンチセンスオリゴヌクレオチドおよびその組合せ;細胞周期阻害剤、mTOR阻害剤、および成長因子受容体シグナル伝達キナーゼ阻害剤;レチノイド(retenoids);サイクリン/CDK阻害剤;HMG補酵素レダクターゼ阻害剤(HMG co-enzyme reductase inhibitors)(スタチン);および蛋白分解酵素阻害薬を挙げることができる。
【0096】
ここに記載するように、様々な薬物または作用物質を、ポリマー材料と混合する、または装置の表面に付着させるなどの様々な方法で医療装置に含めることができる。シロリムスすなわちラパマイシン、ヘパリン、エベロリムス(everolimus)、タクロリムス(tacrolimus)、パクリタキセル、クラドリビン(cladribine)、およびスタチンなどの薬物類を含む様々な薬物を治療薬として用いることができる。このような薬物および/または作用物質は、親水性、疎水性、親油性、および/または疎油性とすることができる。
【0097】
ラパマイシンは、米国特許第3,929,992号に開示されているように、ステプトマイセス・ハイグロスコーピカス社(Steptomyces hygroscopicus)が製造する大環状トリエン(macrocyclic triene)抗生物質である。特にラパマイシンは、生体内で血管平滑筋細胞の増殖を抑制することが分かっている。したがって、ラパマイシンは、哺乳動物における内膜平滑筋細胞過形成、再狭窄、および血管の閉塞の治療に用いることができ、生物学的または機械的に誘導された血管疾患の後、または哺乳動物がこのような血管疾患に罹患する条件下で用いることができる。ラパマイシンは、平滑筋細胞の増殖を抑制する働きをし、血管壁の再内皮化(re-endotheliazation)を阻害しない。
【0098】
ラパマイシンは、血管形成術で傷害を受けた際に放出される分裂促進信号に応答して平滑筋の増殖に拮抗して血管過形成を軽減する。細胞周期のlate G1期における成長因子およびサイトカイン誘発平滑筋増殖の抑制が、ラパマイシンの作用の主な機構であると考えられる。しかしながら、ラパマイシンは、全身投与されると、T細胞の増殖および分化を防止することも知られている。これは、ラパマイシンの免疫抑制活性およびグラフト拒否反応を防止する能力の基礎である。
【0099】
ここに記載するようにラパマイシンは、ラパマイシン、FKBP12に結合するラパマイシンの全ての類似体、誘導体、および結合体、および他のイムノフィリンを含み、TORの阻害を含むラパマイシンと同じ薬理学特性を有する。
【0100】
本発明のシステムおよび方法に従った薬物送達装置内に含められる薬物または他の作用物質の量は、薬物送達装置の約0wt%〜99wt%の範囲とすることができる。このような薬物または他の作用物質は、様々な方法で装置内に含めることができる。例えば、このような薬物または他の作用物質は、装置が形成された後にその装置にコーティングすることができる。この場合、コーティングは、このような薬物または他の作用物質が含められた生体吸収性ポリマーからなる。別法では、薬物または他の作用物質は、装置を構成する生体吸収性材料の基質に含めることができる。生体吸収性ポリマーの基質に含められた薬物または作用物質の量は、所望に応じて、前記したコーティング技術で設けられる薬物または作用物質の量と同じまたは異なるようにすることができる。薬物送達装置内またはその表面に薬物または他の作用物質を付加するこれらの様々な技術を組み合わせて、装置の性能を最適化し、装置からの薬物または他の作用物質の放出の制御を容易にすることができる。
【0101】
薬物または作用物質が、装置を構成する生体吸収性ポリマーの基質内に含められている場合、例えば、薬物または作用物質が、装置の分解の際に拡散によって放出される。拡散によって放出される薬物または作用物質は、コーティング技術を用いた場合に比べて放出期間が長くなり、局所的な病変および拡散した病変またはその状態をより効率的に治療することができる傾向にある。薬物または作用物質の広域送達の場合、このような薬物または作用物質の拡散放出は効果的である。ポリマーの組成およびそれらの拡散および吸収の特性により、このような装置の薬物溶出プロフィールが制御される。薬物放出動態は、薬物の拡散およびポリマーの吸収によって制御される。当初は、ほとんどの薬物が、装置表面およびバルクからの拡散によって放出され、次いで、ポリマーの吸収による薬物の放出に徐々に移行する。薬物の放出を制御する他の因子も存在するであろう。ポリマーの組成が、同じ単量体単位(例えば、ラクチド、グリコリド)からなる場合、拡散特性および吸収特性は、混合された単量体から形成されたポリマーに比べてより均一である。また、各層で異なる薬物が設けられた種々のポリマーの層が存在する場合、各層からの薬物の放出がより一層制御される。ポリマーが完全に吸収されるまで装置に薬物を残存させることが可能であるため、装置の寿命に亘って薬物を放出することができる。
【0102】
本発明のシステムおよび方法に従った薬物送達装置は、装置の活発な薬物送達段階で、装置の機械的な完全性が維持されるのが好ましい。薬物送達が完了すると、装置の構造が、装置を構成している材料が生体吸収されて消失するのが理想である。薬物送達装置を構成する生体吸収性材料は、たとえ装置が患者の体内に配置されても、装置が植え込まれる組織と装置との相互作用が最小限となるように、装置が組織に対して生体適合性であるのが好ましい。組織が配置される組織の炎症を最小限にすることが、同様に、たとえ装置の生体吸収性材料の分解が起こったとしても好ましい。複数の薬物治療を行うために、濃縮または封入された薬物粒子またはカプセルをポリマー基質に含めることができる。このような一部の活性成分が、炎症抑制および血栓抑制などの様々な治療効果を果たすことができる。
【0103】
別の例示的な実施形態に従えば、ここに記載するステントは、金属から構成されるかまたはポリマーから構成されるかに関係なく、薬物が装置の表面に付着された薬物送達装置または治療薬として利用することができる。金属ステントは、内部に治療薬が含められた生物学的安定性または生体吸収性ポリマーまたはそれらの組合せでコーティングすることができる。コーティングの通常の材料特性には、可撓性、延性、粘着性、耐久性、接着性、および凝集性が含まれる。このような所望の特性を有する生物学的安定性および生体吸収性ポリマーの例として、メタクリレート(methacrylates)、ポリウレタン、シリコーン、ポリ(酢酸ビニル)、ポリ(ビニルアルコール)、エチレンビニルアルコール、ポリ(フッ化ビニリデン)、ポリ(乳酸)、ポリ(グリコール酸)、ポリ(カプロラクトン)、ポリ(トリメチレンカーボネート)、ポリ(ジオキサノン)、ポリオルトエステル(polyorthoester)、ポリ無水物、ポリホスホエステル、ポリアミノ酸、およびこれらのコポリマーおよび混合物を挙げることができる。
【0104】
治療薬を含めるのに加えて、表面コーティングは、放射線不透過性成分、コーティングおよび/または治療薬の両方のための化学安定剤、放射性物質、放射性同位元素(トリチウム(すなわち、重水))および強磁性粒子などの追跡物質、および詳細を後述するセラミック微小球などの機械改質剤(mechanical modifiers)などの他の添加物を含むこともできる。別法では、閉じ込められたギャップを、装置の表面とコーティングとの間および/またはコーティング自体の中に形成することができる。このようなギャップの例として、空気および他のガスを挙げることができ、物質が存在しない(すなわち、真空環境)ようにすることもできる。このような閉じ込められたギャップは、微小封入ガス物質(microencapsulated gaseous matter)の注入などの様々な既知の技術を用いて形成することができる。
【0105】
上記したように、シロリムス、ヘパリン、エベロリムス、タクロリムス、パクリタキセル、クラドリビン(cladribine)、およびスタチンなどの薬物類を含む様々な薬物を治療薬として用いることができる。このような薬物および/または作用物質は、親水性、疎水性、親油性、および/または疎油性とすることができる。作用物質のタイプが、ポリマーのタイプを決定する役割を果たす。コーティング中の薬物の量は、コーティングの収納量、薬物、薬物の濃度、薬物の溶出速度、および多数の追加因子を含む様々な因子によって決まる。薬物の量は、実質的に0%から実質的に100%の範囲にすることができる。一般的な範囲は、約1%未満から約40%またはそれ以上の範囲とすることができる。コーティング中の薬物の分布は、様々にすることができる。1または複数の薬物を、一層、多層、拡散バリアを備えた一層、またはこれらの任意の組合せに分布させることができる。
【0106】
様々な溶媒を用いて、薬物/ポリマー混合物を溶解してコーティング調合物を調製することができる。一部の溶媒は、所望の薬物溶出プロフィール、薬物形態、および薬物安定性に基づくと、良好または不良な溶媒であろう。
【0107】
従来技術に開示されているステントをコーティングするいくつかの方法が存在する。一般的に使用されている方法の例として、スプレーコーティング、浸漬コーティング、静電塗装、流動層被覆、および超臨界液体コーティングを挙げることができる。
【0108】
使用することができるここに開示した一部の加工法およびその変更形態は、薬物がステントに保持されるようにするのにポリマーを必要としない。ステントの表面を改変して、薬物の容量および組織と装置の相互作用を増大させるべく、表面積を増大させることができる。ナノテクノロジーを利用して、組織特異的薬物含有ナノ粒子を含むことができる自己組織化ナノ材料(self-assembled nanomaterials)を形成することができる。このようなナノ粒子を含めることができる微細構造を、マイクロエッチングによって表面に形成することができる。このような微細構造は、レーザーマイクロ加工、リソグラフィ、化学蒸着、および化学エッチングなどの方法によって形成することができる。微細構造は、化学蒸着技術によってステントの表面に形成することができる。微細構造はまた、マイクロエレクトロメカトロニクス(MEMS)およびマイクロ流体工学の発展を利用してポリマーおよび金属に形成されてきた。ナノ材料の例として、ゾル‐ゲル技術によって形成されるカーボンナノチューブおよびナノ粒子を挙げることができる。治療薬を、このような表面に化学的または物理的に直接付着させるまたは蒸着させることができる。このような表面改変の組合せにより、所望の速度で薬物を放出することができる。ポリマーコーティングが存在しない場合、薬物の直接の露出による初めの破裂を制御するためにポリマーの保護膜を設けることができる。
【0109】
上記したように、ポリマーステントは、例えば表面改変などのコーティングとして治療薬を含むことができる。別法では、治療薬を、例えばコーティングを必要としないバルク改変などでステント構造内に含めることができる。生物学的安定性および/または生体吸収性ポリマーから形成されたステントの場合は、コーティングが用いられる場合、そのコーティングを生物学的安定性かまたは生体吸収性とすることができる。しかしながら、上記したように、装置自体が送達デポーから形成されるため、コーティングは必要ないであろう。この実施形態により、様々な利点が得られる。例えば、1または複数の治療薬は、約50wt%超の高い濃度にすることができる。加えて、濃度の高い1または複数の治療薬により、長い期間に亘って広域薬物送達(5mm超)が可能となる。これにより、拡散した病変、分岐した病変、小さくて蛇行した血管、および脆弱なプラークなどの様々な病変を治療することができる。このような薬物を含むステントまたは他の装置は、配置圧力が極めて低いため(3気圧〜12気圧)、病変した血管を損傷させることがない。このような薬物を含むステントは、バルーン拡張型、自己拡張型、またはバルーン補助自己拡張型システムなどの様々なデリバリシステムによって送達することができる。
【0110】
さらに別の代替の実施形態では、基材の物理特性を変更するべく、基材の中へのセラミックおよび/またはガラスの埋込みを利用することができる。通常は、セラミックおよび/またはガラスの埋込みは、医療用途に用いられるポリマー材料に対して行われる。生物学的安定性および/または生体吸収性セラミックおよび/またはガラスの例として、ヒドロキシアパタイト、リン酸三カルシウム、マグネシア、アルミナ、ジルコニア、イットリウム正方多結晶ジルコニア(yittrium tetragonal polycrystalline zirconia)、非晶質シリコーン、非晶質カルシウム、および非晶質酸化リンを挙げることができる。様々な技術を用いることができるが、工業用に適したゾル‐ゲル法を用いて生物学的安定性ガラスを生成することができる。ゾル‐ゲル技術は、セラミックとガラスのハイブリッドを形成するための溶解法である。通常は、ゾル‐ゲル法では、系を殆どコロイド状の液体(ゾル)からゲルに変換する。
【0111】
ここで図示および説明した実施形態は、最も実用的で好適な実施形態と考えられるが、当業者であれば、ここに図示および開示した特定のデザインおよび方法から容易に変更形態に想到し、このような変更形態を、本発明の概念および範囲から逸脱することなく使用できることは明らかであろう。本発明は、図示および例示した特定の構成に限定されるものではなく、添付の特許請求の範囲に含まれうる全ての変更形態に一致すると解釈されるべきである。
【0112】
〔実施の態様〕
(1)植え込み可能な医療装置において、
フレーム構造、を含み、
前記フレーム構造が、靭性の高い変形可能なフレーム構造(deformable frame structure having increased toughness)を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および、放射線不透過性材料から形成されている、
植え込み可能な医療装置。
(2)実施態様(1)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
(3)実施態様(1)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
(4)実施態様(1)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
(5)実施態様(1)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性材料である、植え込み可能な医療装置。
【0113】
(6)実施態様(1)に記載の植え込み可能な医療装置において、
前記放射線不透過性材料は、硫酸バリウムを含む、植え込み可能な医療装置。
(7)実施態様(1)に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
(8)植え込み可能な医療装置において、
フレーム構造、を含み、
前記フレーム構造が、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、放射線不透過性材料、および、少なくとも1種類の治療薬から形成されている、
植え込み可能な医療装置。
(9)実施態様(8)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
(10)実施態様(8)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【0114】
(11)実施態様(8)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
(12)実施態様(8)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
(13)実施態様(8)に記載の植え込み可能な医療装置において、
前記放射線不透過性材料は、硫酸バリウムを含む、植え込み可能な医療装置。
(14)実施態様(8)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ラパマイシンを含む、植え込み可能な医療装置。
(15)実施態様(8)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ヘパリンを含む、植え込み可能な医療装置。
【0115】
(16)実施態様(8)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、パクリタキセルを含む、植え込み可能な医療装置。
(17)実施態様(8)に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
(18)植え込み可能な医療装置において、
フレーム構造、を含み、
前記フレーム構造が、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および、少なくとも1種類の治療薬から形成されている、
植え込み可能な医療装置。
(19)実施態様(18)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
(20)実施態様(18)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【0116】
(21)実施態様(18)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
(22)実施態様(18)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
(23)実施態様(18)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ラパマイシンを含む、植え込み可能な医療装置。
(24)実施態様(18)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ヘパリンを含む、植え込み可能な医療装置。
(25)実施態様(18)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、パクリタキセルを含む、植え込み可能な医療装置。
【0117】
(26)実施態様(18)に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
(27)植え込み可能な医療装置において、
フレーム構造であって、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、および、少なくとも1種類の可塑剤から形成された、フレーム構造と、
前記フレーム構造に付加された、少なくとも1種類の治療薬と、
を含む、
植え込み可能な医療装置。
(28)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
(29)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
(30)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
【0118】
(31)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
(32)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、前記フレーム構造の表面に直接付加されている、植え込み可能な医療装置。
(33)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ポリマー賦形剤に含められて、前記フレーム構造の表面に付加されている、植え込み可能な医療装置。
(34)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ラパマイシンを含む、植え込み可能な医療装置。
(35)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ヘパリンを含む、植え込み可能な医療装置。
【0119】
(36)実施態様(27)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、パクリタキセルを含む、植え込み可能な医療装置。
(37)実施態様(27)に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
(38)植え込み可能な医療装置において、
フレーム構造、を含み、
前記フレーム構造が、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、および、少なくとも1種類の可塑剤から形成されている、
植え込み可能な医療装置。
(39)実施態様(38)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
(40)実施態様(38)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
【0120】
(41)実施態様(38)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
(42)実施態様(38)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
(43)実施態様(38)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、硬い脆性材料を含む、植え込み可能な医療装置。
(44)実施態様(38)に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
(45)植え込み可能な医療装置において、
フレーム構造であって、靭性の高い変形可能なフレーム構造を形成するべく混合された、少なくとも1種類のポリマー、少なくとも1種類の可塑剤、および、放射線不透過性材料から形成されている、フレーム構造と、
前記フレーム構造に付加された、少なくとも1種類の治療薬と、
を含む、
植え込み可能な医療装置。
【0121】
(46)実施態様(45)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、生体吸収性である、植え込み可能な医療装置。
(47)実施態様(45)に記載の植え込み可能な医療装置において、
前記少なくとも1種類のポリマーは、非生体吸収性である、植え込み可能な医療装置。
(48)実施態様(45)に記載の植え込み可能な医療装置において
前記少なくとも1種類の可塑剤は、生体吸収性である、植え込み可能な医療装置。
(49)実施態様(45)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の可塑剤は、非生体吸収性である、植え込み可能な医療装置。
(50)実施態様(45)に記載の植え込み可能な医療装置において、
前記放射線不透過性材料は、硫酸バリウムを含む、植え込み可能な医療装置。
【0122】
(51)実施態様(45)に記載の植え込み可能な医療装置において、
前記フレーム構造は、ステントを含む、植え込み可能な医療装置。
(52)実施態様(45)に記載の植え込み可能な医療装置において
前記少なくとも1種類の治療薬は、前記フレーム構造の表面に直接付加されている、植え込み可能な医療装置。
(53)実施態様(45)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ポリマー賦形剤に含められて、前記フレーム構造の表面に付加されている、植え込み可能な医療装置。
(54)実施態様(45)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ラパマイシンを含む、植え込み可能な医療装置。
(55)実施態様(45)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、ヘパリンを含む、植え込み可能な医療装置。
【0123】
(56)実施態様(45)に記載の植え込み可能な医療装置において、
前記少なくとも1種類の治療薬は、パクリタキセルを含む、植え込み可能な医療装置。
【図面の簡単な説明】
【0124】
【図1】本発明に従った生体適合性材料から形成された例示的なステントの平面図である。
【図2】本発明に従った硬い脆性材料と可塑化された材料の応力‐歪み曲線を模式的に示すグラフである。
【図3】本発明に従った硬い脆性材料、軟かいエラストマー材料、およびこの硬質材料と軟質材料の混合物の応力‐歪み曲線を模式的に示すグラフである。




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013