Warning: copy(.htaccess): failed to open stream: Permission denied in /home/jp321/public_html/header.php on line 8
カプセル型医療装置 - オリンパスメディカルシステムズ株式会社
米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 医学 -> オリンパスメディカルシステムズ株式会社

発明の名称 カプセル型医療装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−608(P2007−608A)
公開日 平成19年1月11日(2007.1.11)
出願番号 特願2006−15612(P2006−15612)
出願日 平成18年1月24日(2006.1.24)
代理人 【識別番号】100076233
【弁理士】
【氏名又は名称】伊藤 進
発明者 長谷川 潤 / 野波 徹緒
要約 課題
生体内で撮像する等による生体情報を取得した位置を精度良く検出できるカプセル型医療装置を提供する。

解決手段
体内を移動するカプセル型内視鏡3に内蔵された円形ループのアンテナ23は、高周波信号を送信し、これを体表に配置された複数のアンテナ11a〜11iで受信し、CPU36は、アンテナ23の初期状態の位置及び向きを設定して、それに対して位置及び向きの推定処理を行い、新たに推定された位置及び向きを算出し、初期状態の位置及び向きを更新する。この更新された位置及び向きに対して同様に推定処理を行う。そして、推定処理により更新される位置のずれ量が十分小さな値以下になるまでこの処理を繰り返す事により、精度の良い位置推定を行う。
特許請求の範囲
【請求項1】
生体内に挿入され、アンテナを備えたカプセル型体内装置と、
前記カプセル型体内装置のアンテナから電磁波の信号を無線で送信する無線送信手段と、
前記生体外に配置される複数の体外アンテナと、
前記複数の体外アンテナによって受信した前記電磁波の信号から前記アンテナの位置及び/又は向きを推定する推定手段と、
前記推定手段により推定された位置及び/又は向きの値より算出される推定値と実際に検出される検出値を比較し、その比較した値から算出される前記位置及び/又は向きの更新値が所定値以下になるように前記推定手段による位置及び/又は向きに対する更新を繰り返して補正する更新補正手段と、
を具備したことを特徴とするカプセル型医療装置。
【請求項2】
前記カプセル型体内装置は、生体情報を取得する生体情報取得手段を有し、前記無線送信手段は、前記生体情報取得手段により取得した生体情報を前記信号で送信することを特徴とする請求項1に記載のカプセル型医療装置。
【請求項3】
前記更新補正手段により推定された前記アンテナの位置から、前記生体内における前記カプセル型体内装置の移動した軌跡を算出する軌跡算出手段を有することを特徴とする請求項1に記載のカプセル型医療装置。
【請求項4】
前記推定手段は、前記複数の体外アンテナによって受信した前記電磁波の信号から前記アンテナの位置を、前記生体内での減衰を考慮した理論式を用いて推定することを特徴とする請求項1に記載のカプセル型医療装置。
【請求項5】
前記複数の体外アンテナは、前記電磁波における電界成分を検出する電界検出用アンテナであることを特徴とする請求項1に記載のカプセル型医療装置。


発明の詳細な説明
【技術分野】
【0001】
本発明は、生体内に挿入され、撮像等を行うカプセル型医療装置に関する。
【背景技術】
【0002】
挿入部を体腔内に挿入することにより、体腔内を診断或いは必要に応じて処置を行うことができる内視鏡は、医療用分野その他で広く普及している。
また、最近においては、口から飲み込むことにより、体腔内を撮像して内視鏡検査を行うことができるカプセル形状にしたカプセル型医療装置も実用化される状況になっている。
カプセル型医療装置は、体腔内に挿入された場合には、通常は蠕動運動などにより体腔内を移動するため、カプセル型医療装置により得られる情報が、体腔内のどの位置に相当するものであるかを知ることが望ましい場合がある。
このため、例えば特開2003−135389号公報には、体腔内のカプセルからアンテナを介して無線送信した信号を体外に配置した複数のアンテナで受信して、その受信信号の強度等によりカプセルの位置を算出するものを開示している。
【特許文献1】特開2003−135389号公報
【特許文献2】特許第3571765号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかし、上記公報の従来例では、カプセルの位置を具体的に検出する方法を開示していないし、また無線送信した信号からカプセル或いはカプセル内のアンテナの向きを検出する方法を開示していない。
なお、特許第3571765号公報には、体腔内に挿入される内視鏡の挿入部の長手方向に複数のソースコイルを配置し、これらのソースコイルにより発生する磁界を体外に配置した複数のコイルを用いて、その位置又は/及び向きを検出する装置及び方法が開示されている。しかし、この公報は、挿入部の形状検出に利用されるものであり、カプセルに適用したものではない。
【0004】
(発明の目的)
本発明は上述した点に鑑みてなされたもので、生体内で撮像する等、生体情報を取得した位置及び/又は向きを精度良く検出できるカプセル型医療装置を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明のカプセル型医療装置は、生体内に挿入され、アンテナを備えたカプセル型体内装置と、
前記カプセル型体内装置のアンテナから電磁波の信号を無線で送信する無線送信手段と、
前記生体外に配置される複数の体外アンテナと、
前記複数の体外アンテナによって受信した前記電磁波の信号から前記アンテナの位置及び/又は向きを推定する推定手段と、
前記推定手段により推定された位置及び/又は向きの値より算出される推定値と実際に検出される検出値を比較し、その比較した値から算出される前記位置及び/又は向きの更新値が所定値以下になるように前記推定手段による位置及び/又は向きに対する更新を繰り返して補正する更新補正手段と、
を具備したことを特徴とする。
上記構成により、カプセル型体内装置に内蔵されたアンテナの位置及び/又は向きに対して、その推定値を更新する補正を繰り返し行うことにより、そのアンテナの位置及び/又は向きを精度良く推定できるようにしている。
【発明の効果】
【0006】
本発明によれば、カプセル型体内装置に内蔵されたアンテナの位置及び/又は向きを精度良く推定できる。
【発明を実施するための最良の形態】
【0007】
以下、図面を参照して本発明の実施例を説明する。
【実施例1】
【0008】
図1から図11は本発明の実施例1に係り、図1は本発明の実施例1のカプセル型内視鏡装置等の構成を示し、図2はカプセル型内視鏡の内部構成を示し、図3はアンテナユニットを構成する複数のアンテナの配置例とそのアンテナに設定した座標系を示し、図4はカプセル型内視鏡と体外装置における送受信する電気系の構成を示す。
また、図5はカプセル型内視鏡から無線で送信する画像信号等を示し、図6はカプセル型内視鏡の円形コイルによるアンテナから任意の位置Pにおける電磁界の成分を示し、図7は図6における電界を直交座標系の成分で示し、図8は電磁波が媒質中を伝搬する際に減衰する様子を示し、図9は図6のアンテナが発生する電界を体表に取り付けられた棒状のアンテナで受けた時に検出される起電力を示す。また、図10はカプセル型内視鏡のアンテナの位置及び向きの推定処理の手順を示し、図11はカプセル型内視鏡により撮像された画像を、推定された位置の軌跡と共に表示する表示例を示す。
【0009】
図1(A)に示すように本発明のカプセル型医療装置の実施例1のカプセル型内視鏡装置1は、患者2が口から飲み込むことにより体腔内を検査するカプセル型体内装置としてのカプセル型内視鏡3と、この患者2の体外に配置され、カプセル型内視鏡3で撮像した画像情報を無線で受信するアンテナユニット4に接続される体外装置(或いは外部装置)5とを備えている。
図1(B)に示すようにこの体外装置5はクレードル6に装着することにより、パーソナルコンピュータ等により構成される端末装置7に電気的に接続され、端末装置7は体外装置5に蓄積した画像をキーボード8aやマウス8b等の入力・操作デバイスの操作によりこの端末装置7内に取り込み、取り込んだ画像をモニタ部8cで表示すること等ができる。
図1(A)に示すようにカプセル型内視鏡3を飲み込んで内視鏡検査を行う場合に使用される患者2が着るジャケット10には、複数のアンテナ11が取り付けられたアンテナユニット4が設けてある。
【0010】
カプセル型内視鏡3により撮像され、それに内蔵されたアンテナ23(図2参照)から送信された信号は、アンテナユニット4の複数のアンテナ11で受信され、このアンテナユニット4に接続された体外装置5に撮像した画像を保存することができるようにしている。
【0011】
また、この体外装置5は、例えば箱形状であり、その前面には画像表示を行う液晶モニタ12と、指示操作等を行う操作部13とが設けてある。
なお、体外装置5には、バッテリ残量に関する警告表示用のLEDや操作部13としての電源スイッチなどのみを設ける構成としてもよい。また、第2の体外装置として、カプセル型内視鏡3から送信される画像信号を処理し、備え付けの液晶モニタ画像表示させるような図示しない携帯型の表示装置(ビュワー) が接続されるようにしても良い。
図2に示すようにカプセル型内視鏡3は、円筒の後端側を閉塞した形状を有する外装部材14と、この円筒の先端側に接着剤によって接続されて閉塞する略半球形状に丸みを付けたドーム型カバー14aにて、全体としてカプセル形状で水密構造となっている。
この透明なドーム型カバー14a内で、円筒の中央付近には、ドーム型カバー14aを介して入射された像を結像する対物レンズ15がレンズ枠16に取り付けられて配置され、その結像位置には撮像素子としてここではCCDイメージャ17が配置されている。
【0012】
また、対物レンズ15の周囲には、照明系として、ここでは白色LED18が4つ、同一平面上に配置されている。また、例えばCCDイメージャ17の裏面側には、白色LED18を発光駆動させると共に、CCDイメージャ17を駆動してCCDイメージャ17から入力される撮像信号から画像信号を生成する信号処理を行う処理回路19、画像信号を送信すると共に、体外装置5からの信号を受信する機能を持つ送受信回路20、これらの回路19、20に電源を供給するボタン型電池21が外装部材14の内部に配置されている。
また、ボタン型電池21の後端側、つまり他方の半球形状内側には送受信回路20と接続され、電波を送受信する円形コイル(円形のループコイル)状のアンテナ23が配置されている。なお、CCDイメージャ17、白色LED18や各回路は、図示しない基板上に設けられ、各基板はフレキシブル基板にて接続されている。
【0013】
カプセル型内視鏡3の処理回路19は、CCDイメージャ17の撮像のタイミングを制御する制御信号を発生し、通常の撮像では1秒間に2フレームの画像を撮像し、食道のようにカプセル型内視鏡3が比較的高速に移動するような部位では例えば15から30フレームの画像を撮像する。
また、アンテナ23は、体外装置5から送られてく信号を受信し、受信した信号は送受信回路20により処理され、処理回路19に送られる。処理回路19は送られてきた信号によってCCDイメージャ17の撮像のタイミングや白色LED18の点灯のON/OFF等を制御する。カプセル型内視鏡3の処理回路19に磁石等の磁性体を近づけるとカプセル型内視鏡3内の電源がON/OFF可能な回路を組み込み、患者がカプセル型内視鏡3を飲み込む前にカプセル型内視鏡3の電源を入れて画像を撮影しても良い。
図1(A)に示した患者2が着るジャケット10に取り付けたアンテナユニット4は、拡大して示すと、図3に示すようにアンテナ11a、11b、…、11iによって構成される。
【0014】
カプセル型内視鏡3及び体外装置5における送受信する部分の構成は、図4に示すようになる。 図4に示すようにカプセル型内視鏡3は、白色LED18及びCCDイメージャ17からなる撮像回路31により撮像され、処理回路19により処理された信号は、送受信回路20を経て高周波で変調され、円形のループコイルからなるアンテナ23から電波で送信される。
このアンテナ23から送信される信号は、体外のアンテナユニット4を構成する複数のアンテナ11a、11b、…、11iにより受信される。そして、複数のアンテナ11a、11b、…、11iに接続された送受信回路33により復調され、信号処理回路34に入力される。この信号処理回路34により画像信号に変換されて液晶モニタ12で表示されると共に、画像データ等がメモリ35に格納される。
また、メモリ35に格納された画像データは、ユーザによる操作部13からの指示操作により液晶モニタ12に送ることができ、その表示面に過去の画像を表示させることもできる。
【0015】
また、本実施例においては、体外装置5には、例えばCPU36を用いて構成されるアンテナ位置&向き推定部が設けてあり、このアンテナ位置&向き推定部は、カプセル型内視鏡3に内蔵されたアンテナ23の位置及び向きを推定する推定処理を行い、その位置及び向きを算出する。
後述するようにこの推定処理は、初期状態では適宜に位置及び向きを設定して、それらに対してGauss−Newton法で位置及び向きの推定処理を反復して行う。その際、推定処理により、推定前の値とのずれ量が小さい値以下となるまで反復推定する。
換言すると、推定処理を行う推定手段と、その推定手段により推定された推定値(具体的には位置及び向き)が推定前の値と比較してその差分値が所定値以下となるように推定値を更新補正する更新補正手段とを備えている。尚、後述するように位置及び向きを算出する実施例に限定されるものでなく、位置のみ或いは向きのみを算出するようにしても良い。
【0016】
また、体外装置5に設けられた操作部13を操作して、撮像周期を変更させる等の指示信号を信号処理回路34に入力すると、この信号処理回路34は、送受信回路33に指示信号を送り、送受信回路33は指示信号を変調してアンテナ11a、11b、…、11iから送信する。 アンテナ11a、11b、…、11iから送信された信号は、アンテナ23により受信され、送受信回路20により復調され、送受信回路20は、指示信号に対応して、例えば撮像周期を変更する動作等を行う。
本実施例においては、カプセル型内視鏡3のアンテナ23から体外装置5に撮像回路31で撮像した画像信号を送信する場合には、例えば図5(A)に示すように画像信号と共に、受信強度を検出し易くする受信強度検出信号を送る。
【0017】
つまり、各1フレーム期間中には、受信強度検出用信号を送信する検出期間Taと、画像信号を送信する画像信号期間Tbを設けており、強度検出期間Taには一定の強度(振幅)の受信強度検出用信号を送信する。
そして、この受信強度検出用信号はアンテナユニット4のアンテナ11a、11b、…、11iにより受信され、送受信回路33に入力される。送受信回路33は、受信強度検出用信号を復調して信号処理回路34に送り、信号処理回路34は各アンテナ11s(s=a、b、…、i)により受信された受信強度検出用信号の強度を比較し、比較結果からカプセル型内視鏡3が送信した画像信号を受信するのに適したアンテナを選択して受信する。
また、信号処理回路34は、受信するのに適したアンテナによって得られた画像信号及び各アンテナ11sの受信強度検出用信号を信号処理回路34に接続されているコンパクトフラッシュ(登録商標)等の不揮発性のメモリ35に送り、メモリ35に格納(記憶)する。
【0018】
この場合、画像信号を受信するアンテナとして複数、例えば2つのアンテナを選択して、同時に同じ内容の画像信号を2つ記録するようにしても良い。また、その際、記録する画像信号の強度を1フレーム分積算してその積算結果の大きい方をメモリ35に残し、他方を消去するようにしても良い。
また、信号処理回路34は、受信に最も適したアンテナによって得られた画像信号を信号処理回路34に接続される液晶モニタ12に送り、カプセル型内視鏡3で撮影された画像を表示する。
本実施例においては、上記のように体外装置5にアンテナ位置&向き推定部が設けてあり、このアンテナ位置&向き推定部により、カプセル型内視鏡3に内蔵されたアンテナ23の位置及び向きを算出する。このアンテナ位置&向き推定部は、後述するようにアンテナ23の初期状態の位置及び向きの初期値を設定する(例えば、測定空間の中心位置とXYZ軸方向のいずれかの方向を初期値として設定する)。
【0019】
そして、その初期値(0番目の更新値)を用いて体外アンテナ11a、11b、…、11iに発生する電磁界の検出値を推定し、実際に検出(測定)される検出値との差の二乗和から0番目の位置及び向きに対する更新量を算出する。0番目の位置、向きの更新値から1番目の位置及び向きを算出する。この1番目の位置及び向きに対して同様の推定処理を繰り返し行い、推定後の更新値が十分に小さな値以下(例えば、位置の更新値(Δx、Δy、Δz)の大きさ|Δd|=(Δx+Δy+Δz1/2が十分に小さな値を示した場合)になった更新値をアンテナ23の位置及び向きとする推定値補正処理を行う。このようにして、精度の高い位置及び向きを算出する。
【0020】
次に本実施例の作用を説明する。
【0021】
本実施例において、アンテナユニット4の複数のアンテナ11a、11b、…、11iを用いて検出した受信強度信号からカプセル型内視鏡3の位置と向きを推定する推定手法について説明する。
図6に示すようにカプセル型内視鏡3内に配置された円形コイル或いは円形ループによるアンテナ23を基準とした座標系Xにおいて、任意の位置P(x、y、z)における電磁界(静電界、放射電磁界、誘導電磁界の成分を含む)H、Hθ、Eφは次の式で表される。
【0022】
=(IS/2π)(jk/r+1/r)exp(-jkr)cosθ
θ=(IS/4π)(-k/r+jk/r+1/r)exp(-jkr)sinθ (1)
ψ= -(jωμIS/4π)(jk/r+1/r)exp(-jkr)sinθ
ここで、H及びHθは磁界成分、Eψは電界成分を表し、またIとSはアンテナ23に流れる電流とそのアンテナ23を構成する円形コイルの面積である。また、rは、アンテナ23と任意の位置までの距離r=(x+y+z1/2、kはk=ω(εμ)1/2(εは誘電率、μは透磁率)、jは虚数単位である。
【0023】
カプセル型内視鏡3内に配置されたアンテナ23により発生する電磁界の周波数が高く、図1(A)に示すようにカプセル型内視鏡3と、患者2の体表に取り付けられたアンテナ11sとの距離が十分離れている場合には、アンテナ11sに到達する電磁界(電磁波)は、放射電磁界の成分が最も大きくなる。従って、静電界及び誘導電磁界の成分は、放射電磁界の成分より小さくなり、これらを無視することができる。よって、式(1)は、次の式(2)のようになる。
=0
θ=(IS/4π)(-k/r)exp(-jkr)sinθ (2)
ψ=−(jωμIS/4π)(jk/r)exp(-jkr)sinθ
患者2の体表に取り付けられたアンテナ11sが電界を検出する電界検出用のアンテナであるとすると、式(2)でその検出に必要な式は電界Eψとなる。
式(2)の電界Eψは、放射電界を表し、交流理論による結果と考えられる。従って、電界Eψの瞬時値は、式(2)の電界Eψに両辺にexp(jωt)を掛けて実部を抽出することにより求められる。
【0024】
ψexp(jωt)=-(jωμIS/4π)(jk/r)exp(-jkr)sinθexp(jωt)
=(ωμISk/4πr)(cosU+jsinU)sinθ (3)
但し、U=ωt−krである。
ここで、式(3)の実部を抽出すると、電界の瞬時値E′ψは次のようになる。
E′ψ=(ωμISk/4πr)cosUsinθ (4)
また、式(4)を図7に示すように極座標系(r,θ,ψ)から直交座標系(X,Y,Z)に変換すると、そのX,Y,Zの電界成分ELx、ELy、ELzは、
Lx=E′ψsinψ=(ωμISk/4πr)cosU・(-y
Ly=E′ψcosψ=(ωμISk/4πr)cosU・x (5)
Lz=0
となる。
【0025】
図8に示すように電磁波が媒質中を伝搬する場合、媒質の特性(導電率など)により電磁波のエネルギーが伝搬していく媒質により吸収される。電磁波が例えばx方向に伝搬していくに従って減衰因子αで指数関数的に減衰し、以下に示す式(6)で表すことができる。
【0026】
=exp(-αx) (6)
α=(ωεμ/2)1/2[(1+κ/(ωε))1/2−1]1/2
但し、ε=εε(ε:真空の誘電率、ε:媒質の誘電率)、μ=μμ(μ:真空の透磁率、μ:媒質の透磁率)、ωは角周波数、κは導電率である。
【0027】
従って、生体内の特性を考慮した場合の電界の瞬時値Eは、次のようになる。
【0028】
Lx=AE′ψsinψ=exp(-αr)(ωμISk/4πr)cosU・(-y
Ly=AE′ψcosψ=exp(-αr)(ωμISk/4πr)cosU・x (7)
Lz=0
となる。
【0029】
また、カプセル型内視鏡3のアンテナ23を基準とした座標系 Xにおいて、位置P(x、y、z) を患者2の体を基準とした座標系Xに変換する式は、
[数1]


となる。ただし、(xWP、yWP、zWP)と(xWG、yWG、zWG)は座標系Xでの位置P及びアンテナ23の位置をそれぞれ表す。また、式(8)における右辺第1項に用いられるRは、座標系Xと座標系Xの回転マトリクスを表し、次の式で求められる。
[数2]


ただし、α、βは極座標系の回転量である。
【0030】
従って、患者2の体を基準とした座標系Xにおける任意の位置P(xWP、yWP、zWP) の電界Eは、
[数3]


となり、式(7)、(8)、(9)を式(10)に代入することにより以下のような電界Eの式(11)が得られる。
【0031】
[数4]


但し、kは定数、(g、g、g)は、アンテナ23の向きを表す。
上記アンテナ23が発生した電界Eをアンテナユニット4を構成する例えばアンテナ11a、例えば図9に示すような棒状のアンテナ、つまりダイポールアンテナで受けたとき検出される起電力Vaは、以下の式で算出できる。
【0032】
Va=kcosγ=k((EWxxa+EWyya+EWzza) (12)
ただし、kは定数、Da(図9参照)は患者を基準とした座標系でのアンテナユニット4のアンテナ11aの向き(Dxa、Dya、Dza)を表す。
図3に示すように、アンテナユニット4の各アンテナ11sを患者の体に複数配置し、アンテナ23の位置と向きを反復改良により求める(Gauss−Newton法を用いる)。 xをアンテナ23の位置(xWG、yWG、zWG)と、向き(g、g、g)のパラメータとし、そのパラメータの初期値をx(0)とする。
【0033】
いま、反復改良によりk次の推定値x(k)が得られ、アンテナ11sのコイルに発生する起電力のモデル関数V(x)をx(k)のまわりでTaylor展開すると、その一次近似は、
[数5]


となる。
このとき、Vmをアンテナ11sのコイルによって測定された起電力とすると、観測方程式は、
[数6]


と表される。ここで、近似等号は誤差σを含む。
【0034】
等式(8)の右辺第1項を左辺に移動すると、
[数7]


となる。但し、
ΔVm(k)=Vm−V(x(k))=Vm−Vm(k) (16)
Δx(k)=x−x(k) (17)
js=[∂V(x)/∂xx=x(k)(j=1〜n、s=1〜i)(18)
(行方向):未知数の数n、列方向:アンテナ11sのコイルの数i)
である。解Δx(k)は、式(18)より
Δx(k)=(At(k)WA(k)−1t(k)WΔVm(k) (19)
と表される。ただし、AはAの転置行列、Wは重み行列である。
【0035】
よって、式(14)より改良したパラメータの推定値は、
(k+1)=x(k)+Δx(k) (20)
と求められる。
【0036】
図3に示すように、患者2に9個のアンテナ11a、11b、…、11iを設置した場合、行列Aは、
[数8]


重み行列Wは、
[数9]


と表される。ただし、重み行列Wのσ(j=0、1、…、8)は、アンテナ11の測定電圧の変動量で、例えば環境ノイズ等である。
【0037】
また、第k番目のΔVmは、
[数10]


となることから、カプセル型内視鏡3内のアンテナ23の位置と向きは、次の手順(a)〜(d)で求められる。
(a)k=0とし、アンテナ23の初期値を位置(xWg(0)、yWg(0)、zWg(0))、向き(g(0)、g(0)、g(0))とする(例えばアンテナ23を測定する空間の中心位置とZ軸方向のベクトル(0、0、1)とする)。
【0038】
(b)式(21)、(22)、(23)により第k番目の行列を計算する。
(c)式(19)により第k番目更新量Δx(k)を計算する。
(d)更新量Δx(k)が小さくなるまでの処理(b)から(d)を繰り返す。
このような推定処理を行うことにより、精度の高い位置及び向きの推定(算出)ができることになる。
この推定処理のフローは、図10に示すようになる。
【0039】
ステップS1に示すようにCPU36は、アンテナ23の初期値の位置及び向きの設定を行う。また、アンテナ23の位置及び向きの推定処理を行う際のk番目の推定処理を表すパラメータkをk=0に、カプセル型内視鏡3により得られる画像のフレーム番号NfをNf=1に設定する。なお、患者2の体表に着脱自在で取り付けられるアンテナユニット4を構成する複数のアンテナ11a〜11iの位置情報もメモリ35等に格納しておく。
そして、次のステップS2においてCPU36は、アンテナ11sにより得られた最初の画像のフレームF1に対応する起電力Vmを用いて、上記(b)のように行列A、重み行列W、起電力の更新量行列ΔVmの算出、式(19)の更新量Δx(k)の算出処理(k番目の推定処理)を行う。
【0040】
そして、次のステップS3において、CPU36は算出された例えば更新量Δx(k)の絶対値が予め設定された小さな値Vth以下か否かの判定を行う。なお、この判定に用いる値Vthとして、位置と向きに対して異なる値に設定しても良い。
そして、この条件を満たさない場合には、ステップS4に示すようにパラメータkを1つ大きくしてステップS2に戻り、ステップS3の条件を満たすまで推定処理を繰り返す。
このようにして、ステップS3の条件を満たす更新量Δx(k)が得られた場合には、ステップS5に示すようにCPU36は、そのパラメータkの場合でのアンテナ23の位置及び向きの情報(図面中ではアンテナの位置情報と略記)をメモリ35に、フレーム番号Nfに関連付けて格納する。
【0041】
なお、カプセル型内視鏡3はフレーム番号Nfと共に撮像を行った時刻のデータを記録し、そのデータも送信するようにしても良い。また、体外装置5は、実際に信号を受信した時刻のデータもメモリに格納しても良い。撮像した時刻と送信した時刻とが殆ど同じ場合には、一方の情報のみとしても良い。この時刻の情報からカプセル型内視鏡3の概略の(局所的な)移動速度を検出することができ、位置推定に利用しても良い。
次のステップS6においてCPU36は、フレーム番号Nfを1つ増大させると共に、ステップS5で得られたアンテナ23の位置及び向きの情報をアンテナ23の初期値の位置及び向きに設定した後、ステップS2に戻り、次のフレームに相当する場合の起電力Vmを用いて同様の処理を繰り返す。
【0042】
このようにして体外装置5のメモリ35には、カプセル型内視鏡3により撮像された画像データと各画像データのフレーム番号Nfと共に、そのアンテナ23の位置及び向きの情報が順次(経時的)に格納される。順次格納されたアンテナ23の位置から、アンテナ23の生体内での移動軌跡を推定(算出)することができる。このアンテナ23の位置は、カプセル型内視鏡3の位置と見なすことができ、生体内でのカプセル型内視鏡3の移動軌跡を推定するための情報がメモリ35に格納される。
従って、図1(B)に示すように体外装置5をクレードル6に接続し、この体外装置5のメモリ35に格納された画像データ及びフレーム番号Nf及びアンテナ23の各位置及び向きの情報を端末装置7に転送し、モニタ部8cにそれらの情報を表示させることができる。
【0043】
図11(A)及び図11(B)は、モニタ部8cでの表示例を示す。図11(A)では、表示面における左側には、体腔内におけるカプセル型内視鏡3における推定された各位置を直線で接続し、体腔内を移動したカプセル型内視鏡3の軌跡を示し、この表示面の右側には、(例えば左側でカーソルなどにより)指定された推定位置Piで撮像された画像が表示されるようにしている。
また、表示面の左側の推定された位置による軌跡の右側に示す符号A,B,Cは体腔内における臓器の概略の位置を示し、具体的には符号Aは食道、Bは小腸、Cは大腸を表す。
【0044】
図1(A)に示す表示法の他に、例えば図11(B)に示すように表示しても良い。この場合には、隣接する各位置間をスプライン補間のような補間処理を行い、各フレームで推定されたカプセル型内視鏡3の各位置を滑らかな曲線で接続するように表示している。
このように体腔内における推定された各位置とそれに対応して撮像された画像を表示できるようにしているので、撮像された画像が体腔内におけるどの位置で撮像されたかを容易に判断することができ、効率良く診断を行うことができる。
また、得られた画像から病変部の可能性があり、その部位をより詳細に内視鏡検査する必要があるような場合にも、その位置を精度良く推定できるため、円滑かつ短時間にその部位にアプローチすることができ、再検査や処置等を効率良く行うことができる。
【0045】
従って、本実施例は以下の効果を有する。
本実施例によれば、体腔内に存在するカプセル型内視鏡3の位置を正確に推定することができる。この場合、電磁波が生体内を伝搬する場合に、電磁波のエネルギーが吸収される影響を考慮した電界の式を定式化して位置及び向きを推定しているので、カプセル型内視鏡3の位置及び向きを高い精度で推定或いは算出できる。
【0046】
また、推定された位置から軌跡を求め、この軌跡を表示することにより、体腔内の臓器内におけるどの位置で撮像された画像であるかの判断を行い易くなり、病変部の診断や、さらに詳細に検査を行う必要がある場合にも、効率良く行うことができる。
また、本実施例においては、カプセル型体内装置としてのカプセル型内視鏡3に設けたアンテナ23により発生する電磁界における電界成分のみを検出する棒状のアンテナを用いているので、アンテナ23(或いはカプセル型内視鏡3)の位置及び向きの推定を行う処理を(電界及び磁界を検出するアンテナを用いた場合と比較して)より簡単に行うことができる。
【0047】
なお、カプセル型内視鏡3により撮像されながら移動する生体内臓器、具体的には食道、胃、大腸、小腸などの典型的な形状データを記録しておき、カプセル型内視鏡3の移動の軌跡を表示する場合に比較し易いようにしても良い。
なお、上述の説明は、アンテナ23(或いはカプセル型内視鏡3)の位置及び向きの推定を行う場合で説明したが、位置及び向きの一方のみを推定(算出)するようにしても良い。つまり、実施例1の変形例として、アンテナ23(或いはカプセル型内視鏡3)の位置又は向きのみを推定(算出)するようにしても良い。
【0048】
この場合においても、上述した方法により位置又は向きを精度良く算出できる。この場合には両方を算出する場合よりも演算量が少なくなり、高速に算出できる。従って、実施例1及びその変形例の場合を含めて、アンテナ23(或いはカプセル型内視鏡3)の位置及び/又は向きの推定を行うようにしても良い。この場合には、図4に示したCPU36はアンテナ位置&/向き推定部として機能する。
なお、以下に説明する他の実施例においても位置及び向きを推定する場合で説明するが、同様に位置及び/又は向きを推定するようにしても良い。
【実施例2】
【0049】
次に本発明の実施例2を説明する。本実施例のハードウェア上の構成は、実施例1と同様である。本実施例は、実施例1において、さらに、カプセル型内視鏡3が患者2の体表に取り付けられたアンテナ11sとの距離が接近した場合の影響も考慮した電界を用いるようにしたものである。
【0050】
次に本実施例の作用を説明する。
カプセル型内視鏡3内に配置されたアンテナ23により発生する電磁界の周波数が高く、図1(A)に示すようにカプセル型内視鏡3と、患者2の体表に取り付けられたアンテナ11sとの距離が十分に離れている場合には、アンテナ11sに到達する電磁界は、放射電磁界の成分が最も大きくなる。しかし、アンテナ11sとの距離が近接している(つまり距離が小さくなる)と、誘導電磁界の影響を受けるようになり、その誘導電磁界を無視することができなくなる。
【0051】
このため、式(1)において、静電界の影響のみを無視する(つまり、放射電磁界と誘導電磁界の成分を残す)と、式(1)は次の式(24)のようになる。
【0052】
=(IS/2π)(jk/r)exp(-jkr)cosθ
θ=(IS/4π)(-k/r+jk/r)exp(-jkr)sinθ (24)
ψ= -(jωμIS/4π)(jk/r+1/r)exp(-jkr)sinθ
患者2の体表に取り付けられたアンテナ11sが電界を検出するアンテナであるとすると、式(24)で必要な式は、電界Eψとなる(磁界成分は検出されないため)。この電界Eψは、誘導電界と放射電界の各成分を表し、交流理論による結果と考えられる。
【0053】
従って、電界Eψの瞬時値は、式(24)の電界Eψの両辺にexp(jωt)をかけて実部の成分を取ることにより求められる。つまり、
ψexp(jωt)=-(jωμIS/4π)(jk/r+1/r)exp(-jkr)sinθexp(jωt)
=(ωμISk/4πr){sinU+RcosU−j(cosU−RsinU)}sinθ (25)
但し、U=ωt−kr、R=krである。
ここで、式(25)の実部を抽出すると、電界の瞬時値E′ψは次のようになる。
E′ψ=(ωμISk/4πr){sinU+RcosU}sinθ (26)
また、式(26)を図7に示すように極座標系(r,θ,ψ)から直交座標系(X,Y,Z)に変換すると、そのX,Y,Zの電界成分ELx、ELy、ELzは、
Lx=E′ψsinψ=(ωμISk/4πr){sinU+RcosU}(-y
Ly=E′ψcosψ=(ωμISk/4πr){sinU+RcosU}x (27)
Lz=0
となる。
【0054】
また、実施例1のように生体の媒質中を電磁波が伝搬する場合、媒質中での減衰を考慮した場合には、式(27)は、以下の式(28)のようになる。
Lx=exp(-αr)(ωμISk/4πr){sinU+RcosU}(-y
Ly=exp(-αr)(ωμISk/4πr){sinU+RcosU}x (28)
Lz=0
式(27)或いは式(28)に対して、実施例1で説明したように患者2の体を基準とした座標系Xにおける任意の位置P(xWP,yWP,zWP)の電界Ewの式を回転マトリックスRを用いて求める。
【0055】
すると、実施例1の式(11)に対応する電界Eを得ることができる。また、図9に示した棒状のアンテナで形成したアンテナ11aで、電界Eを受けた時の起電力Vaは、式(12)で表される。その式(12)で検出される起電力Vaを用いて実施例1と同様にGauss−Newton法を適用することにより、カプセル型内視鏡3(或いはその内部のアンテナ23)の位置及び向きを精度良く算出することができる。
【0056】
本実施例によれば、カプセル型体内装置としてのカプセル型内視鏡3と、患者2の体表に取り付けられたアンテナ11sとの距離が近接した場合においても、誘導電磁界の影響を考慮した電界の式を定式化しているため、その場合にもカプセル型内視鏡3の位置と向きを精度よく算出(推定)できる。
【実施例3】
【0057】
図12に基づいて本発明の実施例3を説明する。まず、本実施例の構成を説明する。本実施例のカプセル型内視鏡装置の構成は、実施例1におけるアンテナユニット4に用いられるアンテナ11とその構造(形状)が異なっている。
そして、そのためにアンテナ11によって検出される電界の式が異なる。具体的には、本実施例に用いられるアンテナ11は、図12に示すように切れている円形アンテナ(閉ループでない円形アンテナ)11が用いられている。その他の構成は実施例1と同様である。
次に本実施例の作用を説明する。
実施例1では直線的なダイポールアンテナ11によって電界を検出したが、本実施例では図12に示すように円形に曲げられたアンテナを用いて、カプセル型内視鏡3に内蔵されたアンテナ23が発生する電界を検出する。
図12に示す円形のアンテナ11を用いた場合には、実施例1における式(1)から式(11)をそのまま適用できる。そして、実施例1におけるアンテナ11aで検出される起電力Vaとしては式(12)の代わりに、以下に示す式(29)となる。
【0058】
Va=kEsinγ=kE|E×D|/|E||D| (29)
ここで、kは、式(12)のkに相当する定数である。
この後の処理は実施例1の式(13)〜式(23)に沿った処理を行うことにより、アンテナ23の位置及び向きを精度良く推定できる。本実施例では、実施例1における直線状のアンテナ11を円形にすることで、その指向性を緩和できる。
従って、本実施例は、以下の効果を有する。
アンテナ23より発生する電界を受信する場合、アンテナを円形にすることによって実施例2のような直線的なアンテナよりもアンテナ23の向きによる影響を小さくできる。
【0059】
次に本実施例の第1変形例を以下に説明する。上述の説明では、受信側となるアンテナユニット4の複数のアンテナ11に誘起される起電力に基づいてカプセル型内視鏡3に内蔵されたアンテナ23の位置及び向きを推定するようにしていた。本変形例ではアンテナ11に誘起され、実際に検出されるパワー(電力)を用いてアンテナ23の位置及び向きを推定する処理を行う。
本施形例のアンテナ11を用いて検出されるパワーは
Va=ksinγ=k|E×D|/|E||D|
=k|E×D| (30)
となる。
【0060】
この式(30)は、式(29)を用いた場合よりも簡単な表式となる。そして、偏微分が容易になり、この式(30)を用いて位置推定を行うことにより、より高速に位置推定の処理を行うことができる効果がある。
また、本実施例における第2変形例を以下に説明する。
本実施例の第2変形例におけるカプセル型内視鏡3Bを図13に示す。本変形例のカプセル型内視鏡3Bは、図2に示したカプセル型内視鏡3において、アンテナ23を構成する円形コイル23aの他に、例えばこの円形コイル23aの軸方向(円形コイル面に直交する方向)と垂直方向にその軸方向が設定された第2のアンテナとなる円形コイル23bを設けている。なお、円形コイル23aの軸方向は、例えばカプセル型内視鏡3Bのほぼ中心軸の方向と一致するように配置されている。
【0061】
上記円形コイル23bの軸方向は、例えばCCDイメージャ17の撮像面における所定の方向、具体的には上下方向(図13中において、撮像面の上方向をUpで示している)と一致するように外装部材14内に配置されている。
なお、円形コイル23bの軸方向の情報のみからは、CCDイメージャ17の撮像方向となる上方向か或いは逆の下方向かは決定できないが、両コイル23a、23b間の位置情報を参照することにより撮像方向を決定できるようにしている。換言すると、カプセル型内視鏡3Bの長手方向の軸の回りの(基準角からの)回転量或いは回転角を検出できるようにしている。 そして、例えば図14(A)に示すように円形コイル23bと23aとにより位置及び向き(方向)推定用の信号を送信し、その後に例えば円形コイル23aにより画像信号を送信する。
一方、体外装置5は、2つの円形コイル23a、23bにより、受信した信号強度から、画像信号を受信するのに適したアンテナを選択する。
【0062】
また、2つの直交する円形コイル23a、23bを用いることにより、カプセル型内視鏡3Bの位置及び向きを精度良く算出することができる。なお、円形コイル23a、23bの各位置及び向きの推定処理は、1つの円形コイル23aの算出の場合と同様に行うことができる。。
また、本変形例における2つの円形コイル23a、23bの位置及び特に円形コイル23bの軸方向の情報から、撮像面の上方向を決定できる。体外装置5は、この情報を画像に関連付けて記録する。そして、撮像された画像を表示する場合には、例えば撮像面の上方向が常時上方向となるように、撮像された画像の向きを、ある方向に揃えて表示する。
例えば、体表に着脱自在で取り付けたアンテナ11の面に対して、カプセル型内視鏡3Bが食道内等を移動した場合、仮にカプセル型内視鏡3Bが軸方向の周りで回転した場合には、撮像された画像が回転する。本変形例では撮像面の例えば上方向を検出できるようにしているので、このような回転が存在しても画像を表示する場合には、回転させない状態で表示するように制御する。
【0063】
換言すると、カプセル型内視鏡3Bにより撮像された画像を表示する際、その画像の向きを、カプセル型内視鏡3Bの長手方向の軸の回りにおける回転角を一定にした状態で表示する。このように表示すると、上記のようにカプセル型内視鏡3Bが回転を伴って体内を移動するような場合においても、表示される画像の向きが揃えられて表示されるので、見やすい或いは診断しやすい画像となる。
このように本変形例によれば、診断等をより行い易い画像の表示が可能となる。なお、図14(A)のように円形コイル23bと23aとにより位置及び方向推定用の信号を送信した後に例えば円形コイル23aにより画像信号を送信する代わりに、図14(B)に示すように円形コイル23bと23aとにより交互に画像信号を送信したり、同じ画像信号を2回ずつ送信し、その際位置及び方向推定を行うようにしても良い。
【0064】
また、本変形例は、実施例1,或いは実施例2に適用しても良い。なお、上述した各実施例を部分的に組み合わせて構成される実施例も本発明に属する。また、上述した例では、生体内での生体情報として、体腔内を光学的に撮像した画像情報を取得する場合で説明したが、本発明はこれに限定されるものでなく、例えばpHセンサを設けてpHを算出するようなカプセル型医療装置にも適用できる。この他に、薬液とその薬液を散布する手段を設けて医療行為を行えるようにしても良い。
【0065】
[付記]
1.請求項1において、前記複数の体外アンテナを前記生体に着脱自在に取り付ける取り付け手段を具備した。
【0066】
2.請求項2において、前記生体に取り付けられた複数の体外アンテナの各位置を記憶する位置記憶手段を具備した。
3.請求項1において、前記カプセル型体内装置に、該カプセル型体内装置における長手方向の軸の回りの回転角を検出可能とする第2のアンテナを設けた。
4.付記3において、前記アンテナ及び前記第2のアンテナに対して、各位置及び又は向きの推定処理を行う。
【0067】
5.付記4において、前記カプセル型体内装置は、生体内を撮像して画像情報を取得し、前記画像情報を画像として表示する際、表示する前記画像の向きを、前記カプセル型体内装置の前記回転角を一定にした状態に揃えて表示する。
6.請求項5において、前記電界検出用アンテナは、前記カプセル型体内装置に設けられたアンテナにより発生される電磁波における放射電界成分及び誘導電界成分を検出する。
7.請求項1において、前記推定手段は前記アンテナと前記体外アンテナとの距離が小さい場合を考慮して、前記位置及び/又は向きを推定する。
【産業上の利用可能性】
【0068】
口から飲み込まれることにより体内を撮像等して生体情報を取得するカプセル型医療装置において、内部に設けたアンテナから電磁波で体外に信号を送信し、その信号を体外に設けた複数のアンテナを用いて受信することにより、生体情報を取得した体内での位置などを精度良く推定できる構成にしているので、診断に有効利用できる。
【図面の簡単な説明】
【0069】
【図1】本発明の実施例1のカプセル型内視鏡装置等の構成を示す図。
【図2】カプセル型内視鏡の内部構成を示す概略の断面図。
【図3】アンテナユニットを構成する複数のアンテナの配置例とそのアンテナに設定した座標系を示す図。
【図4】カプセル型内視鏡と体外装置における送受信する電気系の構成を示すブロック図。
【図5】カプセル型内視鏡から無線で送信する画像信号等を示す説明図。
【図6】カプセル型内視鏡の円形コイルによるアンテナによる任意の位置における電磁界の成分を示す図。
【図7】図6における電界を直交座標系の成分で表した図。
【図8】電磁界が媒質中を伝搬する際に減衰する様子を示す図。
【図9】図6のアンテナが発生する電界を体表に取り付けられた棒状のアンテナで受けた時に検出される起電力を示す図。
【図10】カプセル型内視鏡のアンテナの位置及び向きの推定処理の手順を示すフローチャート図。
【図11】カプセル型内視鏡により撮像された画像を推定された位置と共に表示する表示例を示す図。
【図12】本発明の実施例3におけるアンテナユニットに採用されるアンテナの形状を示す図。
【図13】実施例3の第2変形例におけるカプセル型内視鏡の概略の内部構成を示す図。
【図14】図13のカプセル型内視鏡から送信する信号の具体例を示す図。
【符号の説明】
【0070】
1…カプセル型内視鏡装置
2…患者
3…カプセル型内視鏡
4…アンテナユニット
5…体外装置
7…端末装置
11…アンテナ
12…液晶モニタ
15…対物レンズ
17…CCDイメージャ
20…送受信回路
23…アンテナ
33…送受信回路
35…メモリ
36…CPU(アンテナ位置&向き推定部)




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013