米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 医学 -> 株式会社東芝

発明の名称 超音波診断装置
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2007−7482(P2007−7482A)
公開日 平成19年1月18日(2007.1.18)
出願番号 特願2006−287973(P2006−287973)
出願日 平成18年10月23日(2006.10.23)
代理人 【識別番号】100058479
【弁理士】
【氏名又は名称】鈴江 武彦
発明者 神山 直久 / 小笠原 洋一
要約 課題
リアルタイムで3次元画像を表示する超音波診断装置を提供する。

解決手段
ある断層面に対して従来の2次元超音波診断装置以上の画質のBモード用スキャンを行い、従来装置以上のエコー輝度を示す断層像を得て、このBモード用スキャンと混在して、少なくともこの断層面を含む限られた3次元領域についてドプラモード用スキャンを行い、3次元血流画像を得て、断層像に3次元血流画像を重畳して表示する。このため、3次元血流画像が断層像の上に浮き出て見え、従来の2次元診断装置による診断に比較的近い形式で、しかも奥行き方向の情報までが観察でき、正確な診断を容易に下すことができる。
特許請求の範囲
【請求項1】
被検体を超音波ビームで走査してエコー信号を収集する収集手段と、
前記収集手段による2次元領域の走査によって収集されたエコー信号に基づいて2次元断層像を得る手段と、
前記収集手段による3次元領域の走査によって収集されたエコー信号に基づいて3次元情報を得る手段と、
前記収集手段を制御して2次元断層像を生成するための走査と3次元情報を生成するための走査とを混在して行わせる走査制御手段とを具備し、
前記3次元領域は、前記2次元領域と交わることを特徴とする超音波診断装置。
【請求項2】
前記2次元領域を含む平面の一部分が前記3次元領域と交わることを特徴とする請求項1に記載の超音波診断装置。
【請求項3】
前記3次元情報は血流情報であることを特徴とする請求項1に記載の超音波診断装置。
【請求項4】
前記3次元情報は複数断層面の2次元断層像情報であることを特徴とする請求項1に記載の超音波診断装置。
【請求項5】
前記3次元情報は前記断層像内に設定された関心領域を前記断層像に対して直交する方向に走査することにより得られることを特徴とする請求項1に記載の超音波診断装置。
【請求項6】
前記関心領域を前記断層像に対して直交する方向に走査する範囲は前記関心領域の周辺になるにつれて小さいことを特徴とする請求項5に記載の超音波診断装置。
【請求項7】
前記3次元情報は前記断層像より手前側の複数断層面、あるいは手前側及びその後ろ側の両方向の複数断層面の情報であることを特徴とする請求項1に記載の超音波診断装置。
【請求項8】
前記表示手段は前記3次元情報の写像を前記断層像に重畳させて表示することを特徴とする請求項1に記載の超音波診断装置。
【請求項9】
前記表示手段は前記写像を示す補助フレームも表示することを特徴とする請求項8に記載の超音波診断装置。
【請求項10】
前記表示手段は、前記断層像のみを表示する第1のモードと、前記3次元情報のみを表示する第2のモードと、前記3次元情報と前記断層像とを重畳表示する第3のモードと、表示モードを第1乃至第3のいずれかのモードに切替え設定する手段とを具備することを特徴とする請求項1に記載の超音波診断装置。
【請求項11】
前記収集手段は2次元配列振動子を具備し、
前記断層像は任意方向の断層面に関して得られ、
前記3次元情報は任意方向に対するエコー信号を基に得られることを特徴とする請求項1に記載の超音波診断装置。
【請求項12】
3次元領域を超音波ビームで走査してエコー信号を収集する手段と、
前記エコー信号に基づいて2次元断層像を得る手段と、
前記エコー信号に基づいて3次元情報を得る手段と、
前記3次元情報を前記2次元断層像に重畳させて表示する手段と、
前記収集手段を制御して2次元断層像を生成するための走査と3次元情報を生成するための走査とを混在して行わせる走査制御手段とを具備し、
前記3次元情報を生成するための走査は少なくとも前記2次元断層像を含む領域であり、
前記3次元情報は前記断層像内に設定された関心領域を前記断層像に対して直交する方向に走査することにより得られ、
前記関心領域を前記断層像に対して直交する方向に走査する範囲は前記関心領域の周辺になるにつれて小さいことを特徴とする超音波診断装置。
発明の詳細な説明
【技術分野】
【0001】
本発明は、診断診断部位の3次元情報をリアルタイムに表示する超音波診断装置に関する。
【背景技術】
【0002】
従来公知の一般的な超音波診断装置は、1次元配列(アレイ)振動子からなる探触子(超音波プローブ)を用いて超音波ビームを所定の断層面内で走査(スキャン)し、2次元情報からなる断層像を表示するシステムである。これに対して、超音波プローブを移動させながら3次元空間を走査し、3次元画像情報(いわゆる、ボリューム画像)を得る試みが、近年、盛んに行われている。超音波診断装置における3次元画像の表示は、新たな診断の可能性を開くものとして期待されている。具体的には、腹部用のコンベックスプローブやリニアアレイプローブを、手動または機械により移動させ超音波ビームの向きを変えたり、電子セクタプローブを回転させる機構を持った経食道用マルチプレーンプローブを用いる等の研究が進められている。
【0003】
このような3次元超音波診断装置は、3次元情報を得るための3次元空間走査自体が従来の2次元超音波診断装置の断層走査に比べてかなりの時間を要するため、心臓などの動きの早い対象の場合は、動きの情報に追従できず、画像が大きく歪むことがある。また、動きが心臓ほど速くない腹部の場合でも、プローブの固定が十分ではなく、プローブの移動速度が一定ではない場合は、画像が大きく歪むことがある。
【0004】
そのため、電子走査式の2次元フェイズドアレイ振動子からなる2次元プローブを有し、超音波ビームを電子的に3次元空間で走査できる機能を持つ超音波プローブを備え、3次元のボリューム像を30フレーム/秒の実時間(リアルタイム)に近いフレームレートでスキャンし、3次元画像を表示する超音波診断装置が開発されている。
【0005】
ここで、3次元ボリューム像の利点は、言うまでもなく、従来の2次元的な断層像では得られなかった奥行き方向の情報が得られる点や、任意方向の視点から診断部位を観察可能な点である。しかし、これらの利点を生かした観察を行う場合、3次元ボリューム像に対して、観察切断面の変更や回転などの操作が必須となる。この操作は、ある瞬間の画像を再生する場合や、数秒程度の動画を繰り返し再生する場合には比較的容易であるが、超音波診断画像のように連続した動画を扱う場合、処理速度の点から全ての3次元画像に対してこのような操作を行うわけにはいかない。また、全ての3次元画像に対して観察切断面の変更や回転などの操作が必要とは限らない。
【0006】
また、3次元ボリューム像をリアルタイムで走査/表示する超音波診断装置において、3次元ボリューム像を表示した場合でも、ある断層面については従来の2次元断層像とほぼ同一のフレームレートで画像を観察したい要求があると考えられるが、常に3次元空間を走査し、収集した3次元情報から2次元断層像を再構成する場合には、3次元情報はリアルタイムのフレームレートを保つために解像度を多少犠牲にしているので、従来の2次元超音波診断装置と同等の画像の2次元情報を得るには、当該3次元空間に対して従来の2次元超音波診断装置以上の超音波エネルギーを与える必要があり、安全性の点で問題がある。
【特許文献1】特開平6−22966号公報(段落0050、段落0052)
【発明の開示】
【発明が解決しようとする課題】
【0007】
このように従来の3次元超音波診断装置には、3次元情報の全てをリアルタイムに表示できないという欠点がある。また、2次元断層像を表示するためには、従来装置以上の超音波エネルギーが必要になる欠点がある。
【0008】
本発明の目的は、従来の2次元超音波診断装置以上の画質の断層像を生成するとともに、少なくともこの断層像を含む3次元領域についての3次元画像を生成し、断層像に3次元画像を重畳して表示する超音波診断装置を提供することである。
【課題を解決するための手段】
【0009】
前記課題を解決し目的を達成するために、本発明は以下に示す手段を用いている。
【0010】
(1)本発明の一態様による超音波診断装置は、被検体を超音波ビームで走査してエコー信号を収集する収集手段と、前記収集手段による2次元領域の走査によって収集されたエコー信号に基づいて2次元断層像を得る手段と、前記収集手段による3次元領域の走査によって収集されたエコー信号に基づいて3次元情報を得る手段と、前記収集手段を制御して2次元断層像を生成するための走査と3次元情報を生成するための走査とを混在して行わせる走査制御手段とを具備し、前記3次元領域は、前記2次元領域と交わることを特徴とする。
【0011】
(2)本発明の他の態様による超音波診断装置は、上記(1)に記載した超音波診断装置であって、前記2次元領域を含む平面の一部分が前記3次元領域と交わることを特徴とする。
【0012】
(3)本発明の他の態様による超音波診断装置は、上記(1)に記載した超音波診断装置であって、前記3次元情報は血流情報であることを特徴とする。
【0013】
(4)本発明の他の態様による超音波診断装置は、上記(1)に記載した超音波診断装置であって、前記3次元情報は複数断層面の2次元断層像情報であることを特徴とする。
【0014】
(5)本発明の他の態様による超音波診断装置は、上記(1)に記載した超音波診断装置であって、前記3次元情報は前記断層像内に設定された関心領域を前記断層像に対して直交する方向に走査することにより得られることを特徴とする。
【0015】
(6)本発明の他の態様による超音波診断装置は、上記(5)に記載した超音波診断装置であって、前記関心領域を前記断層像に対して直交する方向に走査する範囲は前記関心領域の周辺になるにつれて小さいことを特徴とする。
【0016】
(7)本発明の他の態様による超音波診断装置は、上記(1)に記載した超音波診断装置であって、前記3次元情報は前記断層像より手前側の複数断層面、あるいは手前側及びその後ろ側の両方向の複数断層面の情報であることを特徴とする。
【0017】
(8)本発明の他の態様による超音波診断装置は、上記(1)に記載した超音波診断装置であって、前記表示手段は前記3次元情報の写像を前記断層像に重畳させて表示することを特徴とする。
【0018】
(9)本発明の他の態様による超音波診断装置は、上記(8)に記載した超音波診断装置であって、前記表示手段は前記写像を示す補助フレームも表示することを特徴とする。
【0019】
(10)本発明の他の態様による超音波診断装置は、上記(1)に記載した超音波診断装置であって、前記表示手段は、前記断層像のみを表示する第1のモードと、前記3次元情報のみを表示する第2のモードと、前記3次元情報と前記断層像とを重畳表示する第3のモードと、表示モードを第1乃至第3のいずれかのモードに切替え設定する手段とを具備することを特徴とする。
【0020】
(11)本発明の他の態様による超音波診断装置は、上記(1)に記載した超音波診断装置であって、前記収集手段は2次元配列振動子を具備し、前記断層像は任意方向の断層面に関して得られ、前記3次元情報は任意方向に対するエコー信号を基に得られることを特徴とする。
【0021】
(12)本発明の他の態様による超音波診断装置は、3次元領域を超音波ビームで走査してエコー信号を収集する手段と、前記エコー信号に基づいて2次元断層像を得る手段と、前記エコー信号に基づいて3次元情報を得る手段と、前記3次元情報を前記2次元断層像に重畳させて表示する手段と、前記収集手段を制御して2次元断層像を生成するための走査と3次元情報を生成するための走査とを混在して行わせる走査制御手段とを具備し、前記3次元情報を生成するための走査は少なくとも前記2次元断層像を含む領域であり、前記3次元情報は前記断層像内に設定された関心領域を前記断層像に対して直交する方向に走査することにより得られ、前記関心領域を前記断層像に対して直交する方向に走査する範囲は前記関心領域の周辺になるにつれて小さいことを特徴とする。
【発明の効果】
【0022】
以上説明したように本発明によれば、従来の2次元超音波診断装置以上のレベルの走査条件で1断層面について2次元走査し、従来装置以上の画質のエコー輝度を示す断層像を表示し、少なくともこの断層面を含み、従来の3次元超音波診断装置の走査範囲より狭い3次元領域について3次元情報を得る走査を行い、少なくとも断層像を含む領域の3次元画像を得て、断層像に3次元画像を重畳して表示する。このように断層像が主となる表示において、3次元画像がその上に浮き出て見える表示手法を採用したため、従来の2次元診断装置による診断に比較的近い形式で、しかも奥行き方向の情報までが観察可能となり、正確な診断を容易に下すことができる。また、断層像表示が主であり、3次元走査範囲は従来よりも狭い限られた領域だけであるので、リアルタイムの観察が可能である。
【発明を実施するための最良の形態】
【0023】
以下、図面を参照して本発明による超音波診断装置の好ましい実施形態を説明する。
【0024】
第1実施形態
図1は本発明の第1実施形態に係る超音波診断装置の構成を示す図である。本実施形態は、電子走査式の2次元フェイズドアレイ超音波振動子からなり、超音波ビームを立体的に走査できる機能を持つ超音波プローブ1を備え、超音波プローブ1は被検体Pの体表面から体内の3次元空間に向けて超音波ビームを送信することができる。
【0025】
所定のスキャン法にしたがって超音波プローブ1を駆動し、かつ超音波プローブ1の受信信号を処理する装置本体20が超音波プローブ1に接続される。装置本体20にはトラックボール22、キーボード23等の指示入力装置が接続、あるいは設置され、オペレータからの指示情報を装置本体20に入力可能な操作パネル21が接続される。トラックボール22、キーボード23等の入力装置は、従来の装置では装置条件の設定、関心領域(ROI:Region of Interest)の設定を行うものであるが、本発明でも同様に諸条件を設定、変更するために使用される。
【0026】
装置本体20は、超音波プローブ1に接続される超音波送信部2と超音波受信部3とを具備する。
【0027】
超音波送信部2は、パルス発生器2A、送信遅延回路2Bおよびパルサ2Cからなり、超音波プローブ1からパルス状の超音波ビームを生成し被検体Pの内部の3次元領域を走査する。2次元アレイからなる超音波プローブ1においては、送信遅延回路2Bの遅延制御により、空間的に任意の方向のエコー信号を得るためのフォーカス点の制御に加えて、断層像と垂直方向の音場制御も行うことにより、1次元アレイプローブに比べてより焦域を絞ったエコー信号が得られる。
【0028】
図2(a),(b)にそれぞれセクタ方式、リニア方式の走査を行った場合の3次元/2次元断層音場のモデルを示す。2次元フェーズドアレイ超音波プローブ1によって、3次元的エコー信号を同時受信し、2次元的ビームフォーミングをによって3次元的な情報を得る。また、2次元フェーズドアレイ超音波プローブ1は1枚の2次元断層像の画質改善にも使用されることがある。この場合、従来の1次元アレイプローブでは変更不可能であった音響レンズ方向の音場についても、2次元プローブにてy方向のビームフォーミングを行うことができるため、レンズ方向(y方向)のビーム音場の広がりを少なくすることができ、高画質化が図れる。3次元音場20,30は2次元フェーズドアレイ超音波プローブ1の全ての振動子にて同時受信ができる場合のものである。2次元断層音場21,31は超音波プローブ1のx方向の1列の振動子、あるいはレンズ方向(y方向)の音場の広がりを少なくするために複数列の振動子を用いて2次元ビームフォーミングを行う。なお、2次元断層音場21,31はx方向に平行の場合を示したが、y方向に平行な場合はy方向の1列、あるいは複数列の振動子を用いることになる。さらに、2次元断層音場21,31は遅延時間を制御することにより、x方向でもy方向でもない任意の斜め方向に形成することも可能である。
【0029】
超音波プローブ1から振動子、あるいは所定数の振動子からなるチャンネル毎に出力されるエコー信号は、超音波受信部3に取り込まれる。エコー信号は、チャンネル毎にプリアンプ3Aで増幅され、受信遅延回路3Bにより受信指向性を決定するのに必要な遅延時間が与えられ、加算器3Cで加算される。この加算により受信指向性に応じた方向からの反射エコー成分が強調される。送信遅延回路2Bによる送信指向性と受信遅延回路3Bによる受信指向性とにより送受信の総合的な指向性を持った超音波ビームが形成される。
【0030】
超音波受信部3の出力はレシーバ部4(図示しないが、対数増幅器、包絡線検波回路、アナログディジタルコンバータ(A/Dコンバータ)から構成される)を介してBモード(断層像)用ディジタル走査コンバータ(DSC)部5、ドプラユニット9に供給される。Bモード用DSC部5は、超音波スキャンのラスタ信号列をビデオフォーマットのラスタ信号列からなるBモード断層像情報(以下、Bモード像と称する)に変換する。
【0031】
Bモード用DSC部5にはBモード像を格納するイメージメモリ11が接続される。イメージメモリ11は、Bモード用DSC部5の信号(超音波スキャンのラスタ信号列、ビデオフォーマットのラスタ信号列のいずれか一方、または両者)を記憶保持する半導体メモリから成る。Bモード用DSC部5の出力は合成回路6に供給される。
【0032】
ドプラユニット9の出力は3次元画像(3D)用DSC部10に供給される。ドプラユニット9はドプラ信号を検波し、血流の速度、あるいはパワー情報を計算する。本発明では、カラードプラの3次元情報を得て、3D用DSC部10にて血流の情報を示す3次元画像を再構築し、3次元画像を所望の2次元写像法を用いて2次元平面にマッピングし(鳥瞰図を生成し)、合成回路6においてBモード像に重畳する。
【0033】
3D用DSC部10には3次元画像を格納するボリュームメモリ12が接続される。ボリュームメモリ12は、イメージメモリ11と同様に、3D用DSC部5の信号(カラードプラの3次元情報、血流像の3次元画像情報のいずれか一方、または両者)を記憶保持する半導体メモリから成る。イメージメモリ11、ボリュームメモリ12の記憶情報は、例えば診断の後に操作者が呼び出して利用することが可能となっており、その場合、DSC部5、10、合成回路6を経由して表示部7に出力される。
【0034】
合成回路6は両DSC部5、10からの画像信号を重畳し、処理結果を表示部7で表示する。合成回路6は、画像と図示しないホストCPUから供給される設定パラメータ等の情報を並べる、あるいは重ねるなどしてビデオ信号として表示部7に対して出力もする。操作パネル21からの種々の制御指示信号が供給される制御回路8が超音波送信部2、超音波受信部3、Bモード用DSC部5、3D用DSC部10に接続される。
【0035】
次に、本実施形態の作用を説明する。本実施形態は、Bモード用の2次元スキャンとカラードプラ用の3次元スキャンとを混在して行うものである。各スキャンについて説明する。
【0036】
Bモード用の2次元スキャン
本発明で撮影するBモード断層像は、従来のBモード専用装置で撮影した画像と同程度、あるいはそれ以上の画質(解像度)が得られるように、超音波ビームのラスタ密度が設定されている。2次元スキャンは、超音波プローブ1の2次元アレイ振動子のx方向のある1列、あるいは複数列の振動子を用いて2次元ビームフォーミングを行い、2次元断層面を走査することにより行われる。なお、x方向のある列の振動子を含む断層面に限らず、送信遅延量を制御することにより、x、y方向だけではなく任意の斜め方向の断層面の画像を得ることもできる。この場合、操作者は操作パネル21上のキーボード23あるいはトラックボール22等を使って撮影する断層面の角度を設定・調整可能である。
【0037】
カラードプラ用の3次元スキャン
従来の2次元カラードプラ超音波診断装置と同様に、Bモード用のスキャンと混在して、カラードプラ用のスキャンを行う。ただし、本実施形態では、カラードプラ用のスキャンはBモード用の断層面だけの2次元スキャンではなく、複数の断層面において行われる3次元スキャンである点が従来装置と異なる。なお、断層面の数は、従来の3次元ボリュームスキャンのように縦横同じサイズの領域を同じ解像度でスキャンするだけの多数ではなく、Bモード用のスキャンを行った断層面を含む数センチメートル程度の限られた領域でよい。
【0038】
例えば、図3に示すように、基準となるBモード断層像(右上から左下への斜線)の前後の厚さが数センチメートルに限られた領域(左上から右下への斜線)についてのみカラードプラ用の3次元スキャンを行う。このように、3次元スキャン領域を制限することにより、画質を低下することなく、リアルタイムに近いフレームレートを実現することができる。
【0039】
また、一般的にはBモード断層像内の一部に関心領域ROIを設けて、ROIのみの血流情報を観る場合が多い。この場合は、図4に示すように、ROIの大きさで、かつ基準となるBモード断層像(右上から左下への斜線)の前後の厚さが数センチメートルに限られた領域についてのみ走査すればよい。
【0040】
さらに、図5に示すように、Bモード断層像の前(視点側)の厚さが数センチメートルに限られた領域についてのみ走査してもよい。また、図4、図5の変形例を組み合わせて、ROIの大きさで、Bモード断層像の前の厚さが数センチメートルに限られた領域についてのみ走査してもよい。
【0041】
さらに、上述のスキャン法では、Bモード断層像に対して均一な厚さの領域をスキャンしたが、カラードプラ用の3次元スキャン領域はBモード断層像に直交する方向における厚みが均一でなくてもよい。例えば、図6に示すように、ROIの中心部のみを厚く、周辺は薄くスキャンしてもよい。
【0042】
これらの2つのスキャンを混在して行うことにより得られるエコー情報は、Bモード用のスキャンによれば2次元断層像が、カラードプラ用のスキャンによれば2次元断層像を含む厚さ数センチメートル程度の血流情報からなる3次元ボリュームデータである。2つのスキャンの混在の方法は種々考えられが、要はカラードプラ用のスキャンの途中にBモード用のスキャンを割込み的に実行させればよい。この割込みは周期的であっても、ランダムであってもよい。
【0043】
3次元ボリュームデータは、ドプラユニット9においてドプラ解析され、血流を示すカラー情報とされ、さらに、3D用DSC部10において3次元再構成がなされ、一般的に知られているMIP法などを用いて、所定の視点方向から見た写像(鳥瞰図)が計算され、いわゆる3次元画像が作成される。この3次元画像は、合成回路6において、Bモード用DSC部5で得られたBモード像と合成され、表示部7にて表示される。
【0044】
合成回路6は、図7(a)に示すようにBモード断層像にカラーの立体像を重畳する。この場合、カラー画像の奥行きを表現する必要があるため、例えば図7に示すように、Bモード断層面に対して斜め上から鳥瞰したような写像を表示するのが望ましい。また、この時、鳥瞰していることが明確に解るように、補助フレームFRを表示することは有用である。ただし、鳥瞰する方向はBモード断層面に対して斜め上に限定されず、斜め下等でも構わない。
【0045】
Bモード断層像とカラー3次元像の重畳の方法はいくつか考えられる。例えば、(i)Bモード断層像の前面に現れる血流情報のみを3次元立体表示する、(ii)Bモード像を透過的に表示することにより、Bモード断層像の前後に現れる血流情報を全部表示する等がある。
【0046】
ここで、操作パネル21等を使った操作者の指示により、本発明のBモード断層像・カラー3次元像重畳表示と、通常のBモード断層像のみの表示、あるいはBモード断層像にカラードプラの断層像を重畳して表示する表示とが瞬時に切り替わることができるものとする。図7(b)は通常のBモード断層像のみの表示を示す。両者は、断層像の表示に関してはほとんど変わらないので、操作者にとっての表示形態や操作方法が大きく変わることがなく、切り換えを非常にスムーズに行なうことができる。
【0047】
次に、本実施形態の臨床的操作例について説明する。例として、肝臓を走査して肝臓癌の診断を行う場合の操作を説明する。先ず、Bモード断層像にて、占拠性病変(腫瘍のような形状)を探す。Bモード断層像は、当然ながら、少なくとも従来程度の解像度を持つ画像とする。次に、占拠性病変を見つけた場合、カラードプラモードに切り換え、腫瘍を取り巻く血流の有無を観察する。もし、腫瘍に流入する血流があれば、腫瘍を栄養する血管と判断され、この病変は原発性肝癌の疑いが強いと診断される。この時、本発明のBモード断層像・カラー3次元像重畳表示に切換えれば、Bモード断層像で病変の断層面を表示させながら、病変を取り巻く血管を立体的に表示することが可能となる。これらの位置関係は、断層像のみの場合に比べてより正確で観察が容易である。通常、超音波診断によるスクリーニングおよび鑑別診断は4センチメートル以下の肝癌を扱う場合が多い。よって、Bモード断層像において病変の最大径を断層面表示した場合、カラードプラモードのための3次元スキャン領域の厚さは断層像の手前・奥方向にそれぞれ2センチメートル程度あれば十分である。
【0048】
以上説明したように本実施形態によれば、従来と同程度以上の解像度で1断層面を2次元スキャンしてBモード断層像を得るとともに、この断層像を含み、従来の3次元スキャンよりも狭い範囲の3次元領域をフレームレートを落とすことなく略リアルタイムで3次元スキャンして血流像を得て、両者を重畳表示することにより、Bモード断層像の上に血流像が浮き出て見えることになり、Bモード断層像とほぼ同じ感覚で、しかも奥行き方向の情報まで観察可能となり、正確な診断が容易に可能となる。
【0049】
以下、本発明による超音波診断装置の他の実施形態を説明する。他の実施形態の説明において第1の実施形態と同一部分は同一参照数字を付してその詳細な説明は省略する。
【0050】
第2実施形態
第2の実施形態に係る超音波診断装置のブロック図を図8に示す。第1実施形態はBモード断層像にカラードプラ画像を重畳したのに対して、本実施形態は同様の手法をBモード断層像のみで行う。すなわち、第1実施形態のドプラユニット9、3D用DSC部10、ボリュームメモリ12が省略され、Bモード用DSC部5、イメージメモリ11の代わりにBモード・3D用DSC部24、ボリュームメモリ25を設け、複数断層面の断層像を基に3次元ボリューム像を再構成する。
【0051】
すなわち、図9に示すように、従来と同程度以上の解像度で1断層面を2次元スキャンしてBモード断層像を得るとともに、その断層像を含み、従来の3次元スキャンよりも狭い範囲の3次元領域中の複数の断層面をスキャンして複数の断層像データを得る。複数の断層像データをMIP法などを用いて、所定の視点方向から見た写像(3次元像)を作成する。この3次元画像が合成回路6においてBモード像と合成され、表示部7にて表示される。このため、図10(a)に示すように、Bモード断層像において病変部を立体的に観察可能となる。図10(b)は通常のBモード断層像のみの表示を示す。本実施形態でも、操作者は操作パネルを使って、通常のBモード断層表示とBモード断層像・Bモード立体像重畳表示とを瞬時に切り替えることができる。例えば、占拠性疾患の最大径を断層表示して、本手法に切り替えれば、その病変の立体的形状・構造がリアルタイムに観察可能となる。なお、第2実施形態の3次元スキャン範囲も図3から図6に示した第1実施形態と同様に適宜設定可能である。
【0052】
このように第2実施形態によれば、カラー表示の血流像ではなく、腫瘍等の形状を示すモノクロ像をBモード断層像に重畳して表示することにより、Bモード断層像において病変部を立体的に観察することができ、診断の精度の向上につながる。
【0053】
本発明は上述した実施形態に限定されず、種々変形して実施可能である。例えば、上述の説明では、セクタ走査を例にとったが、リニア走査方式にも適用可能である。また、鳥瞰図はBモード断層像のプローブの位置を視点とした写像としたが、視線方向はこれに限らず、任意に設定可能である。さらに、3次元画像の生成法はMIP法に限らず、他の3次元画像表示法を用いてもよい。
【図面の簡単な説明】
【0054】
【図1】本発明による超音波診断装置の第1の実施形態の構成を示すブロック図。
【図2】本発明による超音波診断装置における3次元/2次元断層音場のモデルを示す。
【図3】本発明による超音波診断装置の第1の実施形態のBモード用2次元スキャン/カラードプラ用3次元スキャンのスキャン範囲の一例を示す。
【図4】本発明による超音波診断装置の第1の実施形態のBモード用2次元スキャン/カラードプラ用3次元スキャンのスキャン範囲の他の例を示す。
【図5】本発明による超音波診断装置の第1の実施形態のBモード用2次元スキャン/カラードプラ用3次元スキャンのスキャン範囲の他の例を示す。
【図6】本発明による超音波診断装置の第1の実施形態のBモード用2次元スキャン/カラードプラ用3次元スキャンのスキャン範囲の他の例を示す。
【図7】本発明による超音波診断装置の第1の実施形態のBモード断層像/カラー3次元像の重畳表示例を示す。
【図8】本発明による超音波診断装置の第2の実施形態の構成を示すブロック図。
【図9】本発明による超音波診断装置の第2の実施形態のBモード用2次元スキャン/カラードプラ用3次元スキャンのスキャン範囲の例を示す。
【図10】本発明による超音波診断装置の第2の実施形態のBモード断層像/カラー3次元像の重畳表示例を示す。
【符号の説明】
【0055】
1…超音波プローブ、2…超音波送信部、3…超音波受信部、5…Bモード用DSC部、6…合成回路、9…ドプラユニット、10…3D用DSC部、11…イメージメモリ、12…ボリュームメモリ




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013