米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 医学 -> 旭光学工業株式会社

発明の名称 内視鏡用可撓管
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2002−552(P2002−552A)
公開日 平成14年1月8日(2002.1.8)
出願番号 特願2000−181816(P2000−181816)
出願日 平成12年6月16日(2000.6.16)
代理人 【識別番号】100091292
【弁理士】
【氏名又は名称】増田 達哉 (外1名)
【テーマコード(参考)】
3H111
4C061
【Fターム(参考)】
3H111 AA02 BA01 BA15 BA18 CA03 CB06 CB14 CB29 DA26 DB21 EA04 EA17 
4C061 FF24 HH31 JJ01 JJ06
発明者 國井 圭史 / 松下 実 / 阿部 祐尚 / 葛西 忠志
要約 目的


構成
特許請求の範囲
【請求項1】 内視鏡用可撓管であって、該内視鏡用可撓管の先端から基端方向に125mmの距離にある位置を先端側基準点とし、前記内視鏡用可撓管の基端から先端方向に125mmの距離にある位置を基端側基準点とし、前記先端側基準点と前記基端側基準点との間の長さをLmmとしたとき、下記式(I)により定められる可撓性変化率B{X,Y}が、 B{X,Y}={W(X)−W(Y)}/W(Y) ・・・(I)
(式中、W(X)およびW(Y)は、それぞれ、前記先端側基準点から基端方向にXmm、Ymmの距離にある位置を測定箇所とし、スパン200mmの2つのナイフエッジで前記測定箇所が前記スパンの中心となるように前記内視鏡用可撓管を支持し、前記測定箇所を押圧して、前記測定箇所が押圧方向に50mmだけ変位するときの押圧力の大きさを表す。)
0.2≦B{L/3,0}≦1.5、0≦B{2L/3,L/3}≦0.4、および、0≦B{L,2L/3}≦0.5なる関係を満足することを特徴とする内視鏡用可撓管。
【請求項2】 前記可撓性変化率B{X,Y}は、B{L/3,0}>B{L,2L/3}>B{2L/3,L/3}
なる関係を満足する請求項1に記載の内視鏡用可撓管。
【請求項3】 前記可撓性変化率B{X,Y}は、1〜4の整数であるmのすべてに対して、0.2≦(5/m)・B{mL/15,0}≦1.5、0≦(5/m)・B{(m+5)・L/15,L/3}≦0.4、および、0≦(5/m)・B{(m+10)・L/15,2L/3}≦0.5なる関係を満足する請求項1または2に記載の内視鏡用可撓管。
【請求項4】 前記可撓性変化率B{X,Y}は、0〜14の整数であるnのすべてに対して、B{(nL/15+L/15),(nL/15)}≧0なる関係を満足する請求項1ないし3のいずれかに記載の内視鏡用可撓管。
【請求項5】 前記先端側基準点を測定箇所とした前記押圧力の大きさW(0)が、1.0〜9Nである請求項1ないし4のいずれかに記載の内視鏡用可撓管。
【請求項6】 管状の芯材と、該芯材の外周に被覆された単層または多層積層構造の外皮とを有する請求項1ないし5のいずれかに記載の内視鏡用可撓管。
【請求項7】 前記外皮を構成する層のうちの少なくとも1層の厚さおよび/または構成材料を長手方向に沿って変えることにより、可撓性を長手方向に沿って変化させたものである請求項6に記載の内視鏡用可撓管。
【請求項8】 前記外皮は、内層と、外層と、それらの間に位置する少なくとも1層の中間層とを有する積層体で構成された部分を有するものである請求項6または7に記載の内視鏡用可撓管。
【請求項9】 前記外皮は、押出成形により前記芯材の外周に被覆されたものである請求項6ないし8のいずれかに記載の内視鏡用可撓管。
【請求項10】 前記芯材は、帯状材を螺旋状に巻回して形成された螺旋管と、該螺旋管の外周に被覆され、細線を編組して形成された編組体とを有する請求項6ないし9のいずれかに記載の内視鏡用可撓管。
発明の詳細な説明
【0001】
【発明の属する技術分野】本発明は、内視鏡用可撓管に関する。
【0002】
【従来の技術】医療用内視鏡の体腔への挿入部は、管状部材の内部に、例えば、光ファイバー、電線ケーブル、ケーブル、またはチューブ類等が配置、挿通された構成となっている。この管状部材の全長の大部分は、可撓性(弾力性)を有する内視鏡用可撓管で構成され、その先端に、最先端部分として湾曲部が接続されている。湾曲部は、操作部から内視鏡用可撓管の内部に配設されたワイヤを介して湾曲方向を操作できるようになっている。
【0003】内視鏡検査では、内視鏡の挿入部を例えば、胃、十二指腸、小腸あるいは大腸といった体腔の深部まで挿入する。この際に、内視鏡用可撓管は、曲がった体腔に沿って挿入されるため、この挿入の操作性の良否は、内視鏡用可撓管の可撓性に大きく依存する。
【0004】より詳しく言うと、内視鏡用可撓管の先端から基端までを、先端部、中間部および手元部と大きく3つに分けた場合、先端部は、体内の深部の湾曲が急な管腔に追従して円滑に前進できるように、十分に柔らかいものであるものが挿入の操作性が良い。また、手元部は、押し込み力や捩じり(回転)を加えやすいように、剛性が比較的高いのが好ましい。そして、中間部は、手元部で加えられた押し込み力や回転が先端部に確実に伝達されるようにするとともに、患者に苦痛を感じさせないようにするため、先端部と手元部との中間の適度な剛性とするのが好ましい。
【0005】このようなことから、従来、挿入の操作性の向上を目的として、内視鏡用可撓管の長手方向に沿って可撓性が変化するように構成した内視鏡用可撓管があった。このような内視鏡用可撓管には、先端から基端に向かって、階段状に剛性が増すような構成のものや、先端から基端に向かってほぼ一定の比率(割合)で連続的に剛性が増すような構成のものがあった。
【0006】しかし、そのような内視鏡用可撓管の長手方向に沿った可撓性の変化の仕方は、挿入の操作性の観点から最適化されたものとはなっていなかった。このため、例えば、先端部の柔軟性が高いものは、中間部が柔らかくなり過ぎて、手元部からの押し込み力や捩じりが先端まで確実に伝わらない(押し込み性、トルク伝達性が良くない)ものとなっていた。また、この反対に、中間部に十分な剛性があるものは、先端部の剛性が強過ぎて、先端部が湾曲した管腔に沿って十分小さな曲率半径に曲がることができないものとなっていた。
【0007】つまり、従来の内視鏡用可撓管は、その各部の可撓性のバランスが取れていないものであったため、総合的な挿入の操作性が満足のいくものとなっていなかった。このため、挿入の操作に手間取るために検査時間が長引くということのみならず、患者の負担・苦痛が大きくなるという弊害もあった。
【0008】
【発明が解決しようとする課題】本発明は、長手方向に沿った可撓性の変化の度合いを規定したものであり、その目的は、挿入の操作性に優れた内視鏡用可撓管を提供することにある。
【0009】
【課題を解決するための手段】このような目的は、下記(1)〜(10)の本発明により達成される。
【0010】(1) 内視鏡用可撓管であって、該内視鏡用可撓管の先端から基端方向に125mmの距離にある位置を先端側基準点とし、前記内視鏡用可撓管の基端から先端方向に125mmの距離にある位置を基端側基準点とし、前記先端側基準点と前記基端側基準点との間の長さをLmmとしたとき、下記式(I)により定められる可撓性変化率B{X,Y}が、 B{X,Y}={W(X)−W(Y)}/W(Y) ・・・(I)
(式中、W(X)およびW(Y)は、それぞれ、前記先端側基準点から基端方向にXmm、Ymmの距離にある位置を測定箇所とし、スパン200mmの2つのナイフエッジで前記測定箇所が前記スパンの中心となるように前記内視鏡用可撓管を支持し、前記測定箇所を押圧して、前記測定箇所が押圧方向に50mmだけ変位するときの押圧力の大きさを表す。)
0.2≦B{L/3,0}≦1.5、0≦B{2L/3,L/3}≦0.4、および、0≦B{L,2L/3}≦0.5なる関係を満足することを特徴とする内視鏡用可撓管。これにより、挿入の操作性に優れた内視鏡用可撓管を提供することができる。
【0011】(2) 前記可撓性変化率B{X,Y}は、B{L/3,0}>B{L,2L/3}>B{2L/3,L/3}
なる関係を満足する上記(1)に記載の内視鏡用可撓管。これにより、挿入の操作性がより向上する。
【0012】(3) 前記可撓性変化率B{X,Y}は、1〜4の整数であるmのすべてに対して、0.2≦(5/m)・B{mL/15,0}≦1.5、0≦(5/m)・B{(m+5)・L/15,L/3}≦0.4、および、0≦(5/m)・B{(m+10)・L/15,2L/3}≦0.5なる関係を満足する上記(1)または(2)に記載の内視鏡用可撓管。これにより、挿入の操作性がより向上する。
【0013】(4) 前記可撓性変化率B{X,Y}は、0〜14の整数であるnのすべてに対して、B{(nL/15+L/15),(nL/15)}≧0なる関係を満足する上記(1)ないし(3)のいずれかに記載の内視鏡用可撓管。これにより、挿入の操作性がより向上する。
【0014】(5) 前記先端側基準点を測定箇所とした前記押圧力の大きさW(0)が、1.0〜9Nである上記(1)ないし(4)のいずれかに記載の内視鏡用可撓管。
【0015】これにより、先端部の体腔に対する追従性が向上し、挿入の操作性がより向上する。
【0016】(6) 管状の芯材と、該芯材の外周に被覆された単層または多層積層構造の外皮とを有する上記(1)ないし(5)のいずれかに記載の内視鏡用可撓管。これにより、十分な機械的強度を確保することができる。
【0017】(7) 前記外皮を構成する層のうちの少なくとも1層の厚さおよび/または構成材料を長手方向に沿って変えることにより、可撓性を長手方向に沿って変化させたものである上記(6)に記載の内視鏡用可撓管。これにより、好適な可撓性変化率が容易に得られる。
【0018】(8) 前記外皮は、内層と、外層と、それらの間に位置する少なくとも1層の中間層とを有する積層体で構成された部分を有するものである上記(6)または(7)に記載の内視鏡用可撓管。
【0019】これにより、内視鏡用可撓管に求められる各種の性能を優れたものとするとともに、好適な可撓性変化率が得られる。
【0020】(9) 前記外皮は、押出成形により前記芯材の外周に被覆されたものである上記(6)ないし(8)のいずれかに記載の内視鏡用可撓管。これにより、内視鏡用可撓管を生産性良く、好適に製造することができる。
【0021】(10) 前記芯材は、帯状材を螺旋状に巻回して形成された螺旋管と、該螺旋管の外周に被覆され、細線を編組して形成された編組体とを有する上記(6)ないし(9)のいずれかに記載の内視鏡用可撓管。これにより、十分な機械的強度を確保することができる。
【0022】
【発明の実施の形態】以下、本発明の内視鏡用可撓管の好適な実施形態について、添付図面を参照しつつ詳細に説明する。
【0023】図1は、本発明の内視鏡用可撓管を適用した挿入部可撓管を有する電子内視鏡(電子スコープ)を示す全体図である。以下、図1中、上側を「基端」、下側を「先端」として説明する。
【0024】図1に示すように、電子内視鏡10は、弾力性を有する長尺物の挿入部可撓管1と、挿入部可撓管1の先端11に接続された湾曲部5と、挿入部可撓管1の基端12に設けられ、術者が把持して電子内視鏡10全体を操作する操作部6と、操作部6に接続された接続部可撓管7と、接続部可撓管7の先端側に設けられた光源差込部8とで構成されている。
【0025】挿入部可撓管1は、生体の管腔内に挿入して使用される。また、操作部6には、その側面に操作ノブ61、62が設置されている。この操作ノブ61、62を操作すると、挿入部可撓管1内に配設されたワイヤー(図示せず)が牽引されて、挿入部可撓管1の先端11に接続された湾曲部5が4方向に湾曲し、その湾曲方向を自由に変えることができる。
【0026】湾曲部5の先端部には、観察部位における被写体像を撮像する図示しない撮像素子(CCD)が設けられ、また、光源差込部8の先端部に、画像信号用コネクタ82が設けられている。この画像信号用コネクタ82は、光源プロセッサ装置(図示せず)に接続され、さらに、光源プロセッサ装置は、ケーブルを介してモニタ装置(図示せず)に接続されている。
【0027】光源差込部8の先端部には、光源用コネクタ81が設置され、この光源用コネクタ81が光源プロセッサ装置に接続されている。光源プロセッサ装置内の光源から発せられた光は、光源用コネクタ81、および、光源差込部8内、接続部可撓管7内、操作部6内、挿入部可撓管1内および湾曲部5内に連続して配設された光ファイバー束によるライトガイド(図示せず)を通り、湾曲部5の先端部より観察部位に照射され、照明する。
【0028】前記照明光により照明された観察部位からの反射光(被写体像)は、撮像素子で撮像される。撮像素子で撮像された被写体像に応じた画像信号は、バッファ(図示せず)を介して出力される。
【0029】この画像信号は、湾曲部5内、挿入部可撓管1内、操作部6内および接続部可撓管7内に連続して配設され、撮像素子と画像信号用コネクタ82とを接続する画像信号ケーブル(図示せず)を介して、光源差込部8に伝達される。
【0030】そして、光源差込部8内および光源プロセッサ装置内で所定の処理(例えば、信号処理、画像処理等)がなされ、その後、モニタ装置に入力される。モニタ装置では、撮像素子で撮像された画像(電子画像)、すなわち動画の内視鏡モニタ画像が表示される。
【0031】以上、本発明の内視鏡用可撓管を適用した挿入部可撓管1を有する電子内視鏡10の全体構成について説明したが、本発明の内視鏡用可撓管は、ファイバー内視鏡の可撓管にも適用することができることは、言うまでもない。
【0032】図2は、本発明の内視鏡用可撓管を適用した挿入部可撓管の全体の外観を示す図、図3は、内視鏡用可撓管の可撓性を測定する方法を示す図である。なお、以下の説明では、図2中の左側(挿入部可撓管1の先端11側)を「前」、図2中の右側(挿入部可撓管1の基端12側)を「後」と言う。
【0033】図2に示す挿入部可撓管1は、その可撓性(弾力性)が長手方向に沿って変化するものとなっている。ここで言う可撓性とは、内視鏡として組み立てられた状態において挿入部可撓管1内に挿通される光ファイバー、ケーブルおよびチューブ類等を含まない、挿入部可撓管1単体の可撓性を言う。
【0034】内視鏡用可撓管の可撓性は、一般に、図3に示すような方法により測定することができる。この可撓性の測定方法について、次に説明する。
【0035】まず、挿入部可撓管1を外力の作用しない状態(自然状態)として真っ直ぐに伸ばし、一定の距離(図3中のSで示す長さ)のスパンの2つのナイフエッジ90(支点)で支持する。このとき、可撓性の測定箇所がスパンの中心(中央)に位置するようにする。次に、ナイフエッジ90が接している側と反対の側から、測定箇所を長手方向と垂直な方向に押圧する(図3中の矢印W)。そして、この押圧力により、挿入部可撓管1が撓み、測定箇所が押圧力の作用する方向(押圧方向)に一定の距離(図3中のTで示す長さ)変位するときの押圧力Wの大きさを測定する。
【0036】測定箇所を一定の距離Tだけ変位させるのに必要な押圧力Wの大きさが大きければ、その箇所の可撓性は小さく(剛性が高く)、逆に、押圧力Wが小さければ、その箇所の可撓性は大きい(弾力性が高い)と言うことができる。
【0037】ここでは、ナイフエッジ90のスパンを200mmとし、測定箇所が50mmだけ変位するときの押圧力Wの大きさにより、可撓性を測定することとする。このような条件で測定したときの押圧力Wの大きさを、以下、その測定箇所の「曲げ剛性」と言う。
【0038】測定に際して、ナイフエッジ90と挿入部可撓管1とは固定しない。このため、測定箇所を押圧して、挿入部可撓管1が撓んだ状態では、スパンの間に位置する部分の挿入部可撓管1の長さは、200mmより長くなる場合がある。
【0039】挿入部可撓管1は、以上述べたように測定される曲げ剛性が、長手方向に沿って変化するものとなっている。その変化の様子について以下に説明する。
【0040】ただし、前述した可撓性測定方法では、挿入部可撓管1の両端付近の可撓性を測定することができない。このため、以下、可撓性を測定できない両端付近の部分を除くため、挿入部可撓管1の両端からそれぞれ所定距離内側に位置する基準点13、14なる概念を導入し、これら2つの基準点の間の可撓性の変化について説明する。
【0041】図2に示すように、挿入部可撓管1の先端11から基端12の方向に125mmの距離にある位置を先端側基準点13とし、基端12から先端11の方向に125mmの距離にある位置を基端側基準点14とする。先端側基準点13と基端側基準点14との間においては、任意の箇所で前述した方法により挿入部可撓管1の可撓性(曲げ剛性)を測定することができる。
【0042】また、先端側基準点13と基端側基準点14との間の長さをLmmとする。すなわち、挿入部可撓管1の全長は、(L+250)mmとなる。以下、先端側基準点13から基端12の方向にXmmの距離にある位置を「Xmmの位置」と言う。これによれば、例えば、先端側基準点13は、「0mmの位置」となり、基端側基準点14は、「Lmmの位置」となる。
【0043】挿入部可撓管1の長手方向に沿った可撓性の変化を、下記式(I)により定められる可撓性変化率B{X,Y}を用いて表す。
B{X,Y}={W(X)−W(Y)}/W(Y) ・・・(I)
【0044】式(I)中、W(X)およびW(Y)は、それぞれ、Xmmの位置およびYmmの位置を測定箇所として、前述した方法により可撓性を測定した場合の押圧力Wの大きさを表す。すなわち、W(X)およびW(Y)は、それぞれ、Xmmの位置およびYmmの位置の曲げ剛性を表す。
【0045】可撓性変化率B{X,Y}によれば、Ymmの位置の曲げ剛性に対するXmmの位置の曲げ剛性の増大割合が表される。例えば、B{X,Y}=0であれば、Xmmの位置の曲げ剛性は、Ymmの位置の曲げ剛性と同じであり、B{X,Y}=1であれば、Xmmの位置の曲げ剛性は、Ymmの位置の曲げ剛性の2倍になっている。
【0046】以下、挿入部可撓管1を先端部15、中間部16、手元部17に分け、これらの各部の可撓性の長手方向に沿った変化を、可撓性変化率B{X,Y}を用いて説明する。ここで、先端部15は、先端11から(L/3)mmの位置までの部分とし、中間部16は、(L/3)mmの位置から(2L/3)mmの位置までの部分とし、手元部17は、(2L/3)mmの位置から基端12までの部分とする。
【0047】先端部15を全体的に見た場合の可撓性変化の比率(割合)は、可撓性変化率B{L/3,0}で表される。挿入部可撓管1は、可撓性変化率B{L/3,0}の値が、0.2以上1.5以下となっている。これは、0mmの位置、すなわち先端側基準点13の曲げ剛性に対して、(L/3)mmの位置の曲げ剛性が20〜150%増大する(1.2〜2.5倍になる)ものとなっていることを意味する。また、B{L/3,0}の値は、0.3以上1.4以下であるのがより好ましい。
【0048】先端部15においては、このように可撓性変化の比率(曲げ剛性の変化の比率)が比較的大きいものとなっている。したがって、先端部15では、(L/3)mmの位置から先端11に向かうに従い、十分に曲げ剛性が小さくなる。したがって、先端部15は、柔軟性が十分に高いものとなる。これにより、先端部15は、体内の深部の湾曲が急な管腔に沿って、十分小さな曲率半径に曲がることができる。このため、先端部15が体腔の奥へ前進する際の追従性が良く、特に、大腸のような最も深い部位にまで挿入を行う際の操作性が優れる。また、先端部15の柔軟性が高いことにより、体内を傷つけにくく、安全性にも優れる。
【0049】先端側基準点13の曲げ剛性、すなわち、W(0)は、特に限定されないが、医療用内視鏡の場合、1.0〜9Nであるのが好ましく、2〜8Nであるのがより好ましい。これにより、先端部15の体腔に対する追従性が向上し、挿入の操作性および安全性がより優れたものとなる。
【0050】可撓性変化率B{L/3,0}の値が0.2より小さいと、先端部15の柔軟性と、押し込み性およびトルク伝達性とを両立することができない。
【0051】また、可撓性変化率B{L/3,0}の値が1.5より大きいと、(L/3)mmの位置の曲げ剛性が高くなり過ぎ、管腔に対する追従性が悪化する。さらに、患者の負担・苦痛も増大する。
【0052】中間部16を全体的に見た場合の可撓性変化の比率(割合)は、可撓性変化率B{2L/3,L/3}で表される。挿入部可撓管1は、可撓性変化率B{2L/3,L/3}の値が、0以上0.4以下となっている。これは、(L/3)mmの位置の曲げ剛性に対して、(2L/3)mmの位置の曲げ剛性が0〜40%増大する(1〜1.4倍になる)ものとなっていることを意味する。また、B{2L/3,L/3}の値は、0.05以上0.3以下であるのがより好ましい。
【0053】中間部16においては、このように可撓性変化の比率(曲げ剛性の変化の比率)が比較的小さいものとなっている。また、先端部15の可撓性変化率が比較的大きいので、先端部15は、前述したように全体としては柔軟であるが、(L/3)mmの位置の曲げ剛性は、中程度のものとなっている。したがって、中間部16は、その曲げ剛性の変化の比率(割合)が比較的緩やかであり、全長に渡って、中程度の大きさの適度な曲げ剛性を有している。
【0054】このような構成により、中間部16は、手元部17に加えられた押し込み力や捩じり(回転)を確実に先端部15に伝達するために十分な曲げ剛性を、その全長に渡って、備えるものとなっている。これにより、挿入部可撓管1が押し込み性、トルク伝達性に優れたものとなる。
【0055】また、中間部16は、曲げ剛性が中程度の適度な大きさになっているために、体腔の壁を強く圧迫することがないので、患者の負担・苦痛を軽減することができる。
【0056】また、中間部16は、曲げ剛性の変化の比率(割合)が比較的小さいので、手元部17から加えた押し込み力や捩じり等の操作力が先端部15に自然な形で伝達される。したがって、先端部15が術者の予想に反した動きをすることがなく、術者が思い通りに先端部15を操作することができ、優れた操作感が得られる。さらに、手元部17に近い部分でも曲げ剛性が高くなり過ぎることがないので、患者の負担・苦痛が増大することはない。
【0057】可撓性変化率B{2L/3,L/3}の値が0より小さいと、中間部16に曲げ剛性の小さ過ぎる箇所が生じる。これにより、中間部16が体腔の湾曲に沿うために必要な程度の曲率半径よりもさらに小さく曲がって(ループの形成)、手元部17からの押し込み力が先端部15に伝わりにくい状態(座屈状態)になりやすい。
【0058】また、可撓性変化率B{2L/3,L/3}の値が0.4より大きいと、特に手元部17に近い部分において曲げ剛性が高くなり過ぎて、可撓性が極端に小さくなり、患者の負担・苦痛が増大するので、実際上、内視鏡用可撓管として使用することが困難となる。
【0059】手元部17を全体的に見た場合の可撓性変化の比率(割合)は、可撓性変化率B{L,2L/3}で表される。挿入部可撓管1は、可撓性変化率B{L,2L/3}の値が、0以上0.5以下となっている。これは、(2L/3)mmの位置の曲げ剛性に対して、Lmmの位置、すなわち基端側基準点14の曲げ剛性が0〜50%増大する(1〜1.5倍になる)ものとなっていることを意味する。また、B{L,2L/3}の値は、0.1以上0.4以下であるのがより好ましい。
【0060】手元部17においては、このように可撓性変化の比率(曲げ剛性の変化の比率)が中程度の大きさとなっている。これにより、中間部16と手元部17との境界である(2L/3)mmの位置の中程度の曲げ剛性から、基端12に向かって、曲げ剛性が適度な割合で増加する。したがって、手元部17は、特にその後半部分において比較的高い十分な剛性を有しているので、押し込み力や捩じり等の操作力を加え易い。また、手元部17に加えられた押し込み力や捩じりを効率よく中間部16に伝達することができる。
【0061】可撓性変化率B{L,2L/3}の値が0より小さいと、手元部17の特に後半部分の曲げ剛性が不足し、操作力を加えにくい。
【0062】また、可撓性変化率B{L,2L/3}の値が0.5より大きいと、手元部17の曲げ剛性が大きくなり過ぎて、可撓性が極端に小さくなり、実際上、内視鏡用可撓管として使用することが困難となる。
【0063】また、以上述べたような先端部15、中間部16および手元部17のそれぞれの全体的な可撓性変化の比率(割合)は、B{L/3,0}>B{L,2L/3}>B{2L/3,L/3}
なる関係を満足するのが好ましい。これは、挿入部可撓管1の各部での大まかな可撓性変化の比率(割合)が、先端部15で最も大きく、次いで手元部16で大きく、中間部16で最も小さいことを意味する。これにより、先端部15、中間部16および手元部17のそれぞれの間のバランスがより優れたものとなり、前述した効果がより大きく発揮される。
【0064】また、先端部15において、可撓性変化率B{X,Y}は、0.2≦5・B{L/15,0}≦1.5、0.2≦(5/2)・B{2L/15,0}≦1.5、0.2≦(5/3)・B{L/5,0}≦1.5、および、0.2≦(5/4)・B{4L/15,0}≦1.5、なる関係を満足するのが好ましい。
【0065】すなわち、可撓性変化率B{X,Y}が、1〜4の整数であるmのすべてに対して、0.2≦(5/m)・B{mL/15,0}≦1.5なる関係を満足するのが好ましい。
【0066】これらの関係は、先端側基準点13と(L/3)mmの位置との間を5等分する各点、すなわち、(L/15)mmの位置、(2L/15)mmの位置、(L/5)mmの位置および(4L/15)mmの位置と、先端側基準点13との間の可撓性変化の比率(割合)が、それぞれ、先端部15全体の可撓性変化の比率(割合)と同程度になることを意味する。これにより、先端部15の可撓性の変化が滑らかなものとなり、前述した効果がより大きく発揮される。
【0067】同様に、中間部16においては、可撓性変化率B{X,Y}が、0≦5・B{2L/5,L/3}≦0.4、0≦(5/2)・B{7L/15,L/3}≦0.4、0≦(5/3)・B{8L/15,L/3}≦0.4、および、0≦(5/4)・B{3L/5,L/3}≦0.4、なる関係を満足するのが好ましい。
【0068】すなわち、可撓性変化率B{X,Y}が、1〜4の整数であるmのすべてに対して、0≦(5/m)・B{(m+5)・L/15,L/3}≦0.4なる関係を満足するのが好ましい。
【0069】これらの関係は、中間部16を5等分する各点、すなわち、(2L/5)mmの位置、(7L/15)mmの位置、(8L/15)mmの位置および(3L/5)mmの位置と、(L/3)mmの位置との間の可撓性変化の比率(割合)が、それぞれ、中間部16全体の可撓性変化の比率(割合)と同程度になることを意味する。これにより、中間部16の可撓性の変化が滑らかなものとなり、前述した効果がより大きく発揮される。
【0070】また、同様に、手元部17においては、可撓性変化率B{X,Y}が、0≦5・B{11L/15,2L/3}≦0.5、0≦(5/2)・B{4L/5,2L/3}≦0.5、0≦(5/3)・B{13L/15,2L/3}≦0.5、および、0≦(5/4)・B{14L/15,2L/3}≦0.5、なる関係を満足するのが好ましい。
【0071】すなわち、可撓性変化率B{X,Y}が、1〜4の整数であるmのすべてに対して、0≦(5/m)・B{(m+10)・L/15,2L/3}≦0.5なる関係を満足するのが好ましい。
【0072】これらの関係は、(2L/3)mmの位置と基端側基準点14との間を5等分する各点、すなわち、(11L/15)mmの位置、(4L/5)mmの位置、(13L/15)mmの位置および(14L/15)mmの位置と、(2L/3)mmの位置との間の可撓性変化の比率(割合)が、それぞれ、手元部17全体の可撓性変化の比率(割合)と同程度になることを意味する。これにより、手元部17の可撓性の変化が滑らかなものとなり、前述した効果がより大きく発揮される。
【0073】また、挿入部可撓管1は、先端11から基端12に近づくに従って、曲げ剛性が高くなるもの(ただし、曲げ剛性が一定の部分があっても良い。)であるのが好ましい。このような曲げ剛性の変化は、先端側基準点13から基端側基準点14までの間を15等分する各点の曲げ剛性が、W(0)≦W(L/15)≦W(2L/15)≦W(L/5)≦…………≦W(4L/5)≦W(13L/15)≦W(14L/15)≦W(L)
なる関係を満足することにより、実質上、得ることができる。
【0074】すなわち、可撓性変化率B{X,Y}で表すと、0〜14の整数であるnのすべてに対して、B{(nL/15+L/15),(nL/15)}≧0なる関係を満足するのが好ましい。
【0075】これにより、押し込み性およびトルク伝達性がより優れたものとなる。また、先端部15、中間部16および手元部17のそれぞれの間のバランスがより優れたものとなる。
【0076】挿入部可撓管1は、前述したような可撓性変化率を満足するものであれば、いかなる構成によるものであってもよいが、例えば、以下に説明するような構成により以上述べたような可撓性変化率が得られる。
【0077】図4は、挿入部可撓管1の実施形態を示す縦断面図である。図4中、右側が基端12側(手元側)、左側が先端11側である。
【0078】挿入部可撓管1は、図4に示すように、芯材2と、その外周を被覆する外皮3とを有している。また、挿入部可撓管1には、内部に、例えば、光ファイバ、電線ケーブル、ケーブルまたはチューブ類等の器具等(図示せず)を配置、挿通することができる空間23が設けられている。
【0079】芯材2は、螺旋管21と、螺旋管21の外周を被覆する網状管(編組体)22とで構成され、全体としてチューブ状の長尺物として形成されている。この芯材2は、挿入部可撓管1を補強する効果を有する。特に、螺旋管21と網状管22を組合わせたことにより、挿入部可撓管1は、十分な機械的強度を確保できる。また、図示を省略するが、芯材2は、螺旋管21を2重、あるいは3重に設けることにより、さらに高い機械的強度が得られる。
【0080】螺旋管21は、帯状材を均一な径で螺旋状に間隔をあけて巻いて形成されたものである。帯状材を構成する材料としては、例えば、ステンレス鋼、銅合金等が好ましく用いられる。
【0081】網状管22は、金属製または非金属製の細線を複数並べたものを編組して形成されている。細線を構成する材料としては、例えば、ステンレス鋼、銅合金等が好ましく用いられる。
【0082】芯材2の外周には、外皮3が被覆されている。外皮3は、内層31と、外層32と、中間層33とを有する積層体で構成されている。
【0083】内層31は、外皮3の中で最も内周側に形成されており、芯材2と密着している。
【0084】内層31は、芯材2との密着性(結合力)の高い材料で構成されているのが好ましい。これにより、芯材2に対し外皮3が確実に固定される。このため、挿入部可撓管1の曲がりに合わせて外皮3が十分に大きく伸縮するので、挿入部可撓管1の弾力性が高い。したがって、挿入部可撓管1が座屈しにくいものとなり、挿入の操作性により優れたものとなる。また、繰り返し使用しても、外皮3が芯材2と剥離しにくいので、耐久性に優れたものとなる。
【0085】内層31の厚さは、長手方向に沿ってほぼ一定になっている。内層31の平均厚さは、特に限定されないが、通常は、0.05〜0.8mmであるのが好ましく、0.05〜0.4mmであるのがより好ましい。
【0086】内層31の構成材料は、特に限定されないが、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン、ポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート等のポリエステル、ポリウレタン、ポリスチレン樹脂、ポリテトラフルオロエチレン、エチレン−テトラフルオロエチレン共重合体等のフッ素系樹脂、ポリイミド等の各種可撓性を有する樹脂や、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリオレフィン系エラストマー、ポリアミド系エラストマー、ポリスチレン系エラストマー、フッ素系エラストマー、シリコーンゴム、フッ素ゴム、ラテックスゴム等の各種エラストマーのうちの、1種または2種以上を組み合わせて用いることができる。
【0087】この中でも、特に、ポリウレタン系エラストマー、ポリオレフィン系エラストマー、ポリエステル系エラストマーは、芯材2との密着性に優れるため、好ましい。
【0088】外層32は、外皮3の中で最も外周側に形成されている。外層32の硬度は、比較的高く設定されており、内層31および中間層33の硬度より高いものとなっている。これにより、繰り返し使用しても外皮3の表面に傷が付きにくく、亀裂等の原因になりにくい。
【0089】ここで、通常、耐薬品性や傷の付きにくさを考慮して外層32の硬度を比較的高いものとした場合には、挿入部可撓管1の弾力性(柔軟性)が低下するおそれがある。これに対し、挿入部可撓管1にあっては、後述するように柔軟な中間層33を設けたことにより、そのようなおそれがない。
【0090】外層32の厚さは、先端11から基端12に向かって連続的に漸増している。外層32の平均厚さは、特に限定されないが、通常は、0.05〜0.8mmであるのが好ましく、0.05〜0.4mmであるのがより好ましい。
【0091】外層32は、耐薬品性を備えた材料で構成されているのが好ましい。これにより、繰り返し洗浄および消毒を行っても外皮3の劣化が少なく、外皮3が硬化して可撓性が低下したり、亀裂等が生じて外皮3が網状管22から剥離したりしにくい。
【0092】外層32の構成材料は、特に限定されないが、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン、ポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート等のポリエステル、ポリウレタン、ポリスチレン樹脂、ポリテトラフルオロエチレン、エチレン−テトラフルオロエチレン共重合体等のフッ素系樹脂、ポリイミド等の各種可撓性を有する樹脂や、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリオレフィン系エラストマー、ポリアミド系エラストマー、ポリスチレン系エラストマー、フッ素系エラストマー、シリコーンゴム、フッ素ゴム、ラテックスゴム等の各種エラストマーのうちの、1種または2種以上を組み合わせて用いることができる。
【0093】この中でも、特に、エチレン−酢酸ビニル共重合体等のポリオレフィン、ポリテトラフルオロエチレン、エチレン−テトラフルオロエチレン共重合体等のフッ素系樹脂、ポリエステル系エラストマー、ポリオレフィン系エラストマー、フッ素系エラストマー、シリコーンゴム、フッ素ゴムは、耐薬品性に優れるため、好ましい。
【0094】中間層33は、内層31と外層32との間に形成されている。中間層33は、外層32および内層31より柔軟な(弾力性に優れた)層とされている。
【0095】中間層33の厚さは、外層32と逆に、先端11から基端12に向かって連続的に漸減している。そして、外層32と中間層33との合計厚さは、長手方向に沿ってほぼ一定になっている。
【0096】このような構成により、外皮3は、その全体の厚さが長手方向に沿ってほぼ一定であるが、硬度が高い外層32の厚さの比率が大きい部分(すなわち、比較的柔軟な中間層33の厚さの比率が小さい部分)ほど、引張り・曲げに対する剛性が大きい。したがって、外皮3は、基端12に近い部分ほど、剛性が高いものとなっている。
【0097】このような外皮3の剛性の長手方向に沿った変化により、挿入部可撓管1は、その可撓性(曲げ剛性)が長手方向に沿って変化するものとなっている。そして、外層32と中間層33との厚さの比率を変えることにより、挿入部可撓管1の曲げ剛性を自由に調節することができる。したがって、挿入部可撓管1では、外層32と中間層33との厚さの比率を長手方向に沿って適宜変化させることにより、前述のような可撓性変化率が得られる。
【0098】また、中間層33が内層31および外層32よりも柔軟な層となっていることにより、中間層33が内層31と外層32との間のクッション機能を発揮する。このため、挿入部可撓管1の弾力性が向上し、挿入の操作性がより優れたものとなる。
【0099】中間層33のクッション機能についてより詳しく説明する。挿入部可撓管1が湾曲したとき、中間層33の弾力性が優れていることにより、変形した中間層33の復元力は強く発揮される。そして、中間層33が比較的硬度の高い内層31と外層32との間に挟まれているので、中間層33の復元力は、内層31と外層32とに効率良く伝わる。このため、中間層33の復元力のほぼすべてが挿入部可撓管1の曲げを復元させる力に生かされる。したがって、このような構成とすることにより、挿入部可撓管1は、弾力性に優れる。
【0100】また、外皮3の厚さを長手方向に沿ってほぼ一定としたことにより、挿入部可撓管1の全体の外径をほぼ一定としている。このため、基端12に近い曲げ剛性の大きい部分でも大径化することがないので、患者の負担・苦痛をより軽減することができる。
【0101】中間層33の平均厚さは、特に限定されないが、通常は、0.05〜0.8mmであるのが好ましく、0.05〜0.4mmであるのがより好ましい。
【0102】中間層33の構成材料は、特に限定されないが、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン、ポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート等のポリエステル、ポリウレタン、ポリスチレン樹脂、ポリテトラフルオロエチレン、エチレン−テトラフルオロエチレン共重合体等のフッ素系樹脂、ポリイミド等の各種可撓性を有する樹脂や、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリオレフィン系エラストマー、ポリアミド系エラストマー、ポリスチレン系エラストマー、フッ素系エラストマー、シリコーンゴム、フッ素ゴム、ラテックスゴム等の各種エラストマーのうちの、1種または2種以上を組み合わせて用いることができる。
【0103】この中でも、特に、低硬度の、ポリウレタン系エラストマー、ポリオレフィン系エラストマー、ポリエステル系エラストマーは、柔軟性(弾力性)に優れるため、好ましい。
【0104】本実施形態では、中間層33が1層の構成になっているが、中間層33を2層以上形成した構成としてもよい。
【0105】外皮3の全体の平均厚さは、特に限定されず、通常は、0.15〜0.9mmであるのが好ましく、0.3〜0.8mmであるのがより好ましい。
【0106】以上説明したような挿入部可撓管1によれば、その外皮3を構成する積層体の全長に渡って、内層31、外層32および中間層33を有している。また、これらの各層を構成する材料の組成を長手方向に沿って変化させる必要がない。したがって、前記積層体の各層の特性は、前記積層体の各部分で差異がなく、前記積層体の全長に渡って備わっている。このため、内層31の芯材2との密着性、外層32の耐薬品性、中間層33の柔軟性をそれぞれ前記積層体の全長に渡って優れたものにすることができる。これにより、内視鏡用可撓管の耐久性、耐薬品性、弾力性を前記積層体の全長に渡って優れたものとすることができる。このように、挿入部可撓管1によれば、各種の優れた特性を前記積層体の全長に渡って維持しつつ、長手方向に沿った可撓性(曲げ剛性)の変化が得られる。
【0107】挿入部可撓管1の製造方法は、特に限定されないが、外皮3を芯材2に押出成形によって被覆することにより、連続的に製造することができる。複数の押出口を備えた押出成形機によれば内層31、外層32および中間層33を同時に押出し、その積層体を芯材2に被覆することができる。
【0108】この際、各押出口からの各層の構成材料の供給量(単位時間当たりの供給量)や芯材2の移動速度を調整することにより、各層の厚さを自由に調節することができる。
【0109】押出成形時の材料温度としては、特に限定されないが、例えば、130〜220℃程度であるのが好ましく、165〜205℃程度であるのがより好ましい。押出成形時の材料温度が、かかる温度範囲の場合、材料は、外皮3への成形加工性に優れる。このため、外皮3の厚さは、その均一度が向上する。
【0110】以上、本発明の内視鏡用可撓管について説明したが、本発明は、これらに限定されるものではない。
【0111】例えば、前述したような可撓性変化率を得るためには、以上説明したような構成によらず、例えば、以下のような構成としても良い。
【0112】・外皮を単層で構成する場合において、その層の構成材料(組成)を長手方向に沿って変化させる。
・外皮を積層体で構成する場合において、その少なくとも1層において、その層の構成材料(組成)を長手方向に沿って変える。
・外皮を積層体で構成する場合において、その層数を長手方向に沿って変更する。例えば、先端部を単層、中間部を2層、手元部を3層とする。
・外皮を物性の異なる2つ以上のチューブを接続して構成する。
・螺旋管の肉厚あるいは螺旋ピッチを長手方向に沿って変化させる。
・以上のような構成、あるいは、これら以外の構成を複数組み合わせたものとする。
【0113】
【実施例】以下、本発明を実施例および比較例により、さらに詳細に説明する。
【0114】1.内視鏡用可撓管の作製(実施例1)まず、幅3mmのステンレス製の帯状材を巻回して、外径φ9.9mm、内径φ9.6mmの螺旋管21を作製した。次に、直径φ0.1mmステンレス製の細線を10本ずつ並べたものを編組みした網状管22を作製した。この網状管22で螺旋管21を被覆し、芯材2を得た。
【0115】次に、芯材2の外周に、押出成形により、内層31と外層32と中間層33との3層からなる外皮3を被覆して、長さ1.6mの内視鏡用可撓管を作製した。したがって、先端側基準点13と基端側基準点14との間の長さ(Lmm)は、1350mmとなる。すなわち、L=1350である。
【0116】内層31の厚さは、内視鏡用可撓管の全長に渡って0.1mmとした。外層32の厚さは、先端11において0.05mm、(L/3)mmの位置(450mmの位置)において0.25mm、(2L/3)mmの位置(900mmの位置)において0.28mm、基端12において0.4mmとし、それら各点の間では厚さが先端11から基端12に向かう方向に一定の割合で漸増するものとした。
【0117】中間層33の厚さは、先端11において0.35mm、(L/3)mmの位置(450mmの位置)において0.16mm、(2L/3)mmの位置(900mmの位置)において0.15mm、基端12において0.05mmとし、それら各点の間では厚さが先端11から基端12に向かう方向に一定の割合で漸減するものとした。実施例1の内視鏡用可撓管における外皮3の各層の構成材料を表1に示す。
【0118】(実施例2)外皮3の外層32および中間層33の厚さを次のように変更した以外は、実施例1と同様にして、内視鏡用可撓管を作製した。
【0119】外層32の厚さは、先端11において0.08mm、(L/3)mmの位置(450mmの位置)において0.28mm、(2L/3)mmの位置(900mmの位置)において0.33mm、基端12において0.45mmとし、それら各点の間では厚さが先端11から基端12に向かう方向に一定の割合で漸増するものとした。
【0120】中間層33の厚さは、先端11において0.47mm、(L/3)mmの位置(450mmの位置)において0.27mm、(2L/3)mmの位置(900mmの位置)において0.22mm、基端12において0.1mmとし、それら各点の間では厚さが先端11から基端12に向かう方向に一定の割合で漸減するものとした。実施例2の内視鏡用可撓管における外皮3の各層の構成材料を表1に示す。
【0121】(比較例1)実施例1と同様の芯材2の外周に、押出成形により、内層31と外層32との2層からなる外皮を被覆して、長さ1.6mの内視鏡用可撓管を作製した。
【0122】内層31の厚さは、先端11において0.5mm、基端12において0.35mmとし、先端11から基端12に向かって厚さが一定の割合で漸減するものとした。
【0123】外層32の厚さは、先端11において0.05mm、基端12において0.2mmとし、先端11から基端12に向かって厚さが一定の割合で漸増するものとした。比較例1の内視鏡用可撓管における外皮3の各層の構成材料を表1に示す。
【0124】(比較例2)実施例1と同様の芯材2の外周に、押出成形により、内層31と外層32との2層からなる外皮を被覆して、長さ1.6mの内視鏡用可撓管を作製した。
【0125】内層31の厚さは、先端11において0.37mm、(L/3)mmの位置(450mmの位置)において0.35mm、(2L/3)mmの位置(900mmの位置)において0.26mm、基端12において0.03mmとし、それら各点の間では厚さが先端11から基端12に向かう方向に一定の割合で漸減するものとした。
【0126】外層32の厚さは、先端11において0.03mm、(L/3)mmの位置(450mmの位置)において0.2mm、(2L/3)mmの位置(900mmの位置)において0.34mm、基端12において0.59mmとし、それら各点の間では厚さが先端11から基端12に向かう方向に一定の割合で漸増するものとした。比較例2の内視鏡用可撓管における外皮3の各層の構成材料を表1に示す。
【0127】
【表1】

【0128】表1中の材料A〜Eは、次の通りである。
材料A:中硬度ポリウレタン系エラストマー(JIS K 7311による硬度 A 80°)
材料B:低硬度ポリウレタン系エラストマー(JIS K 7311による硬度 A 65°)
材料C:高硬度ポリエステル系エラストマー(JIS K 7311による硬度 A 91°)
材料D:中硬度ポリウレタン系エラストマー(JIS K 7311による硬度 A 75°)
材料E:高硬度ポリオレフィン系エラストマー(JIS K 7311による硬度 A 95°)
【0129】2.可撓性変化率の測定各実施例および各比較例の内視鏡用可撓管の可撓性変化率を測定した。まず、前述した方法により、先端側基準点13(0mmの位置)、基端側基準点14(Lmmの位置)、および、先端側基準点13と基端側基準点14との間を15等分する各点の曲げ剛性を、それぞれ、測定した。
【0130】先端側基準点13の曲げ剛性を、各実施例および各比較例の内視鏡用可撓管について、それぞれ、表2に示す。
【0131】また、先端側基準点13(0mmの位置)の曲げ剛性を1としたときの、先端部15に属する前記各点(0mmの位置、(L/15)mmの位置、(2L/15)mmの位置、(L/5)mmの位置、(4L/15)mmの位置および(L/3)mmの位置)の曲げ剛性の大きさ(割合)を、各実施例および各比較例の内視鏡用可撓管について、それぞれ、表2に示す。
【0132】
【表2】

【0133】(L/3)mmの位置の曲げ剛性を1としたときの、中間部16に属する前記各点((L/3)mmの位置、(2L/5)mmの位置、(7L/15)mmの位置、(8L/15)mmの位置、(3L/5)mmの位置および(2L/3)mmの位置)の曲げ剛性の大きさ(割合)を、各実施例および各比較例の内視鏡用可撓管について、それぞれ、表3に示す。
【0134】
【表3】

【0135】(2L/3)mmの位置の曲げ剛性を1としたときの、手元部17に属する前記各点((2L/3)mmの位置、(11L/15)mmの位置、(4L/5)mmの位置、(13L/15)mmの位置、(14L/15)mmの位置およびLmmの位置)の曲げ剛性の大きさ(割合)を、各実施例および各比較例の内視鏡用可撓管について、それぞれ、表4に示す。
【0136】
【表4】

【0137】表2に示す先端部15の各点の曲げ剛性の値から、先端部15の可撓性変化率、5・B{L/15,0}、(5/2)・B{2L/15,0}、(5/3)・B{L/5,0}、(5/4)・B{4L/15,0}およびB{L/3,0}が求められる。これらの値を、各実施例および各比較例の内視鏡用可撓管について、それぞれ、表5に示す。
【0138】
【表5】

【0139】表3に示す中間部16の各点の曲げ剛性の値から、中間部16の可撓性変化率、5・B{2L/5,L/3}、(5/2)・B{7L/15,L/3}、(5/3)・B{8L/15,L/3}、(5/4)・B{3L/5,L/3}およびB{2L/3,L/3}が求められる。これらの値を、各実施例および各比較例の内視鏡用可撓管について、それぞれ、表6に示す。
【0140】
【表6】

【0141】表4に示す手元部17の各点の曲げ剛性の値から、手元部17の可撓性変化率、5・B{11L/15,2L/3}、(5/2)・B{4L/5,2L/3}、(5/3)・B{13L/15,2L/3}、(5/4)・B{14L/15,2L/3}およびB{L,2L/3}が求められる。これらの値を、各実施例および各比較例の内視鏡用可撓管について、それぞれ、表7に示す。
【0142】
【表7】

【0143】3.内視鏡用可撓管の挿入の操作性評価各実施例および各比較例で作製した各内視鏡用可撓管について、挿入の操作性の評価を行った。
【0144】各内視鏡用可撓管を挿入部可撓管として用いて、図1に示す電子内視鏡10を製造した。製造した各電子内視鏡10の挿入部を人体の体腔を模造した生体モデルに挿入し、生体モデルの大腸相当部分を挿入部の先端(湾曲部5の先端)が通過するまで挿入した。
【0145】挿入の操作性の評価では、そのときの挿入の操作性を、押し込み性(手元部17から加えた押し込み力が先端11まで確実に伝達されること)とトルク伝達性(手元部17に加えた捩じりに先端11が確実に追従して回転すること)とについて、それぞれ、以下の4段階の基準に従って評価した。
【0146】
◎:押し込み性(またはトルク伝達性)が非常に優れ、挿入操作が円滑に行うことができる。
○:押し込み性(またはトルク伝達性)が良好で、挿入操作がほぼ支障なく行うことができる。
△:押し込み性(またはトルク伝達性)がやや悪く、挿入に手間取って、迅速に挿入することができない。
×:押し込み性(またはトルク伝達性)が劣悪で、合理的な時間内に挿入できない。
挿入の操作性の評価結果を表8に示す。
【0147】
【表8】

【0148】表8に示す結果から明らかなように、実施例1および実施例2の内視鏡用可撓管を用いて製造した電子内視鏡10では、押し込み性、トルク伝達性ともに優れていた。また、管腔に対する追従性にも優れていた。このため、迅速(5分以内)に目的部位まで挿入することができた。
【0149】これに対し、比較例1の内視鏡用可撓管を用いて製造した電子内視鏡10では、曲げ剛性の乏しい部分が生じ、押し込み性、トルク伝達性ともに劣っていた。このため、10分以内に目的部位まで挿入することができなかった。
【0150】また、比較例2の内視鏡用可撓管を用いて製造した電子内視鏡10では、挿入部可撓管の途中から曲げ剛性が大きすぎてほとんど可撓性のないものとなっていたため、湾曲した管腔に対する当該部分の追従性が著しく悪かった。このため、挿入部の先端(湾曲部5の先端)を目的部位まで到達することができなかった。したがって、挿入の操作性を評価できるものではなかった。
【0151】
【発明の効果】以上述べたように、本発明によれば、内視鏡用可撓管の長手方向に沿った可撓性の変化率の最適化が図られることにより、押し込み性およびトルク伝達性が向上し、よって、優れた挿入の操作性が得られる。
【0152】特に、先端部の可撓性やその変化率の最適化により、体腔に対する優れた追従性が得られる。




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013