米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 電気素子 -> 富士写真フイルム株式会社

発明の名称 光電変換素子および光電池
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2001−76775(P2001−76775A)
公開日 平成13年3月23日(2001.3.23)
出願番号 特願平11−252754
出願日 平成11年9月7日(1999.9.7)
代理人 【識別番号】100073874
【弁理士】
【氏名又は名称】萩野 平 (外4名)
【テーマコード(参考)】
4H056
5F051
5H032
【Fターム(参考)】
4H056 CA01 CC02 CC08 CE02 CE03 CE06 DD15 DD19 
5F051 AA14 CB27 FA06
5H032 AA06 AS16 EE02 EE16 EE20
発明者 渡辺 哲也
要約 目的


構成
特許請求の範囲
【請求項1】 下記一般式(I)または(II)で表される色素の少なくとも一種によって増感された半導体微粒子を用いることを特徴とする光電変換素子。
【化1】

式(I)中、Zは単結合または5ないし9員環を完成するために必要な原子団を表し、該原子団は水素、炭素、酸素、窒素および硫黄から選ばれる原子により構成される。L1、L2およびL3は、それぞれ窒素原子または置換基を有していてもよいメチン基を表し、n1は0から2までの整数を表す。Vは置換してもよいアミノ基またはアルコキシ基を表し、VはVが置換しているベンゼン環とともに環を形成してもよい。Aは置換基を表し、置換しているベンゼン環と縮環してもよい。式(II)中、Z'はZと同義であり、L4およびL5はL1〜L3と同義である。n2は0から4までの整数を表す。Qは窒素原子と共に5員もしくは6員のヘテロ環を完成するために必要な原子群を表し、Qはさらに置換基を有していても縮環していてもよい。Rはアルキル基を表す。A'はAと同義である。
【請求項2】 一般式(II)において、Qによって形成されるヘテロ環がベンゾチアゾール核、ベンゾオキサゾール核、2−キノリン核、4-キノリン核またはインドレニン核であることを特徴とする請求項1記載の光電変換素子。
【請求項3】 一般式(I)または(II)において、ZまたはZ'で完成される環を含む酸性核が以下の(ア)〜(オ)のいずれかである請求項1または2に記載の光電変換素子。
【化2】

式中、(ア)〜(オ)は置換基を有していてもよい。
【請求項4】 前記半導体微粒子が酸化チタン微粒子であることを特徴とする請求項1〜3のいずれかに記載の光電変換素子。
【請求項5】 請求項1〜4のいずれかに記載の光電変換素子を用いることを特徴とする光電池。
発明の詳細な説明
【0001】
【発明の属する技術分野】本発明は光電変換素子に関し、詳しくは色素で増感された半導体微粒子を用いた光電変換素子に関する。さらには、これを用いた光電池に関する。
【0002】
【従来の技術】太陽光発電は単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、テルル化カドミウムやセレン化インジウム銅等の化合物太陽電池が実用化もしくは主な研究開発の対象となっているが、普及させる上で製造コスト、原材料確保、エネルギーペイバックタイムが長い等の問題点を克服する必要がある。一方、大面積化や低価格化を指向した有機材料を用いた太陽電池もこれまでにも多く提案されているが、変換効率が低く、耐久性も悪いという問題があった。こうした状況の中で、Nature(第353巻、第737〜740頁、1991年)および米国特許4927721号等に、色素によって増感された半導体微粒子を用いた光電変換素子および太陽電池、ならびにこれを作成するための材料および製造技術が開示された。提案された電池は、ルテニウム錯体によって分光増感された二酸化チタン多孔質薄膜を作用電極とする湿式太陽電池である。この方式の第一の利点は二酸化チタン等の安価な酸化物半導体を高純度に精製することなく用いることができるため、安価な光電変換素子を提供できる点であり、第二の利点は用いられる色素の吸収がブロードなため、可視光線のほぼ全ての波長領域の光を電気に変換できることである。
【0003】色素増感光電変換素子の改良が求められる点の一つに増感色素として高価なルテニウム錯体色素を用いる事が挙げられ、安価な有機色素によって増感される光電変換素子の開発が望まれていた。有機色素によって増感される光電変換素子の例としてはChemistry Letters 753〜754頁(1998年)およびその参考文献などに記載の化合物を用いる方法が知られているが、光電変換の効率は充分高いものではなく、また変換波長域を自由に変化させることができなかった。
【0004】
【発明が解決しようとする課題】本発明の目的は半導体微粒子を高効率に増感し得る有機色素を用いることによって、安価かつ高い変換効率を有する色素増感光電変換素子およびこれを用いた光電池を提供することである。
【0005】
【課題を解決するための手段】本発明者等は、研究の結果、以下に示す光電変換素子が本発明の目的に適う事を見出し、本発明を完成した。
(1)下記一般式(I)または(II)で表される色素の少なくとも一種によって増感された半導体微粒子を用いることを特徴とする光電変換素子。
【0006】
【化3】

【0007】式(I)中、Zは単結合または5ないし9員環を完成するために必要な原子団を表し、該原子団は水素、炭素、酸素、窒素および硫黄から選ばれる原子により構成される。L1、L2およびL3は、それぞれ窒素原子または置換基を有していてもよいメチン基を表し、n1は0から2までの整数を表す。Vは置換してもよいアミノ基またはアルコキシ基を表し、VはVが置換しているベンゼン環とともに環を形成してもよい。Aは置換基を表し、置換しているベンゼン環と縮環してもよい。式(II)中、Z'はZと同義であり、L4およびL5はL1〜L3と同義である。n2は0から4までの整数を表す。Qは窒素原子と共に5員もしくは6員のヘテロ環を完成するために必要な原子群を表し、Qはさらに置換基を有していても縮環していてもよい。Rはアルキル基を表す。A'はAと同義である。
(2)一般式(II)において、Qによって形成されるヘテロ環がベンゾチアゾール核、ベンゾオキサゾール核、2−キノリン核、4-キノリン核またはインドレニン核であることを特徴とする(1)項記載の光電変換素子。
(3)一般式(I)または(II)において、ZまたはZ'で完成される環を含む酸性核が以下の(ア)〜(オ)のいずれかであるような(1)または(2)項に記載の光電変換素子。
【0008】
【化4】

【0009】式中、(ア)〜(オ)は置換基を有していてもよい。
(4)前記半導体微粒子が酸化チタン微粒子であることを特徴とする(1)〜(3)項のいずれかに記載の光電変換素子。
(5)項(1)〜(4)のいずれかに記載の光電変換素子を用いる事を特徴とする光電池。
【0010】
【発明の実施の形態】以下に本発明に使用する一般式(I)、(II)の色素について詳細に説明する。式(I)中、Zは単結合または5ないし9員環を完成するために必要な原子団を表し、該原子団は水素、炭素、酸素、窒素および硫黄から選ばれる原子により構成される。Zが単結合の場合は、完成される環は4員環となる。Zにより完成される環は、好ましくは4員環または水素原子、炭素原子および酸素原子から選ばれる原子により構成される5ないし6員環である。さらに好ましくは、Zで完成される環を含む酸性核が上記(ア)〜(オ)で表される構造のものである。これら(ア)〜(オ)は、置換基を有していてもよく、置換基としては後述するAの例が挙げられる。
【0011】L1〜L3は、それぞれ窒素原子または置換基を有していてもよいメチン基を表す。好ましくは無置換のメチン基である。n1は0から2までの整数を表し、好ましくは0である。置換基としてはアルキル基(好ましくは炭素数1〜5、さらに好ましくは1〜3)、アルケニル基(好ましくは炭素数2〜6、さらに好ましくは2〜4)、アリール基(好ましくは炭素数6〜12、さらに好ましくは6〜8)、ハロゲン原子、ヘテロ環等が挙げられる。
【0012】Vは置換してもよいアミノ基またはアルコキシ基を表し、VはVが置換しているベンゼン環とともに環を形成してもよい。アルコキシ基として好ましくは炭素数1〜6、さらに好ましくは1〜3の、例えば、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。ここでの置換基としては、アルキル基(好ましくは炭素数1〜8、さらに好ましくは1〜4)、アリール基(好ましくは炭素数6〜12、さらに好ましくは6〜8)、カルボン酸基、スルホン酸基、ヒドロキシル基、ハロゲン原子等を挙げることができる。Vは好ましくは置換してもよいアミノ基であり、さらに好ましくはジアリールアミノ基である。
【0013】Aは置換基であり、置換しているベンゼン環と縮環してもよい。Aとして具体的には、ヒドロキシル基、アルキル基(好ましくは炭素数1〜5、さらに好ましくは1〜3)、アリール基(好ましくは炭素数6〜12、さらに好ましくは6〜8)、アルコキシ基(好ましくは炭素数1〜6、さらに好ましくは1〜3)、アミノ基、カルボン酸基、スルホン酸基、ハロゲン原子等が挙げられる。
【0014】式(II)中、Z'はZと同義であり、好ましい態様も同じである。L4、L5はL1〜L3と同義であり、その好ましい態様も同じである。n2は1から4までの整数を表す。n2として好ましくは1または2である。Qは5員もしくは6員の含窒素ヘテロ環を完成するために必要な原子群を表し、Qはさらに置換基を有していてもよく、縮環していてもよい。Qで完成される含窒素ヘテロ環の好ましい例としては、ベンゾチアゾール核、ベンゾオキサゾール核、ベンゾセレナゾール核、ベンゾテルラゾール核、2−キノリン核、4−キノリン核、ベンゾイミダゾール核、チアゾリン核、インドレニン核、オキサジアゾール核、チアゾール核、イミダゾール核が挙げられるが、さらに好ましくはベンゾチアゾール核、ベンゾオキサゾール核、ベンズイミダゾール核、ベンゾセレナゾール核、2−キノリン核、4-キノリン核、インドレニン核であり、特に好ましくはベンゾチアゾール核、ベンゾオキサゾール核、2−キノリン核、4-キノリン核、インドレニン核である。環上の置換基としては、カルボン酸、ホスホン酸、スルホン酸、ハロゲン(F,Cl,Br,I)、シアノ、アルコキシ(メトキシ、エトキシ、メトキシエトキシなど)、アリーロキシ(フェノキシなど)、アルキル(メチル、エチル、シクロプロピル、シクロへキシル、トリフルオロメチル、メトキシエチル、アリル、ベンジルなど)、アルキルチオ(メチルチオ、エチルチオなど)、アルケニル(ビニル、1−プロペニルなど)、アリール(フェニル、チエニル、トルイル、クロロフェニルなど)などが挙げられる。A'はAと同義であり、その詳細も同様である。
【0015】以下に本発明の一般式(I)または(II)で表される化合物の具体例を示すが、本発明がこれに限定されるものではない。
【0016】
【化5】

【0017】
【化6】

【0018】
【化7】

【0019】
【化8】

【0020】
【化9】

【0021】
【化10】

【0022】本発明により使用される化合物の合成例を示す。
合成例1例示化合物(S−1)の合成化合物(S−1)は下記に示したスキ−ムに従って合成することができる。
【0023】
【化11】

【0024】(A−1)0.15gを20%KOH水溶液に溶解し、これに(B−1)0.3gのエタノール溶液を加える。その後氷冷して得られた結晶を吸引ろ過によりろ別し、セファデックスカラムクロマトグラフィーによって精製して(S−1)0.4gを得た。
(λmax=480nm(ε=55000)(メタノール中))
【0025】合成例2例示化合物(S−8)の合成化合物(S−8)は下記に示したスキ−ムに従って合成することができる。
【0026】
【化12】

【0027】(A−2)0.12g、(B−2)0.27g、トリエチルアミン0.1mlをエタノール4mlに溶解し、5分間加熱還流した。濃縮後シリカゲルカラムクロマトグラフィーにて精製して(S−8)0.14gを得た。
(λmax=500nm(ε=40000)(メタノール中))
【0028】以下に本発明の光電変換素子および光電池の構成と材料について詳述する。本発明において色素増感した光電変換素子は導電性支持体、導電性支持体上に設置される色素等により増感した半導体膜(感光層)、電荷移動層および対極からなる。この光電変換素子を外部回路で仕事をさせる電池用途に使用できるようにしたものが光電池である。感光層は目的に応じて設計され、単層構成でも多層構成でもよい。感光層に入射した光は色素等を励起する。励起された色素等はエネルギーの高い電子を有しており、この電子が色素等から半導体微粒子の伝導帯に渡され、さらに拡散によって導電性支持体に到達する。この時色素等の分子は酸化体となっている。光電池においては導電性支持体上の電子が外部回路で仕事をしながら対極および電荷移動層を経て色素等の酸化体に戻り、色素等が再生する。半導体膜はこの電池の負極として働く。なお、本発明ではそれぞれの層の境界において(例えば、導電性支持体の導電層と感光層の境界、感光層と電荷移動層の境界、電荷移動層と対極の境界など)、各層の構成成分同士が相互に拡散して混合していてもよい。
【0029】本発明において、半導体はいわゆる感光体であり、光を吸収して電荷分離を行い電子と正孔を生ずる役割を担う。色素増感された半導体では、光吸収およびこれによる電子および正孔の発生は主として色素において起こり、半導体はこの電子を受け取り、伝達する役割を担う。
【0030】半導体としてはシリコン、ゲルマニウムのような単体半導体の他に、金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)に代表されるいわゆる化合物半導体またはペロブスカイト構造を有する化合物等を使用することができる。金属のカルコゲニドとして好ましくはチタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモン、ビスマスの硫化物、カドミウム、鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム等のリン化物、ガリウムヒ素、銅−インジウム−セレン化物、銅−インジウム−硫化物等が挙げられる。
【0031】また、ペロブスカイト構造を有する化合物として好ましくはチタン酸ストロンチウム、チタン酸カルシウム、チタン酸ナトリウム、チタン酸バリウム、ニオブ酸カリウムが挙げられる。
【0032】本発明に用いられる半導体としてより好ましくは、具体的にはSi、TiO2、SnO2、Fe2O3、WO3、ZnO、Nb2O5、CdS、ZnS、PbS、Bi2S3、CdSe、CdTe、GaP、InP、GaAs、CuInS2、CuInSe2が挙げられる。さらに好ましくはTiO2、ZnO、SnO2、Fe2O3、WO3、Nb2O5、CdS、PbS、CdSe、InP、GaAs、CuInS2、CuInSe2であり、特に好ましくは、TiO2またはNb2O5であり、最も好ましくはTiO2である。
【0033】本発明に用いられる半導体は、単結晶でも、多結晶でもよい。変換効率としては単結晶が好ましいが、製造コスト、原材料確保、エネルギーペイバックタイム等の点では多結晶が好ましく、特にナノメートルからマイクロメートルサイズの微粒子半導体が好ましい。
【0034】これらの半導体微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で一次粒子として5〜200nmであることが好ましく、特に8〜100nmであることが好ましい。また、分散物中の半導体微粒子(二次粒子)の平均粒径としては0.01〜100μmであることが好ましい。
【0035】また、2種類以上の粒子サイズ分布の異なる微粒子を混合して用いてもよく、この場合、小さい粒子の平均サイズは5nm以下であることが好ましい。また、入射光を散乱させて光捕獲率を向上させる目的で、粒子サイズの大きな、例えば300nm程度の半導体粒子を混合してもよい。
【0036】半導体微粒子の作製法は、作花済夫の「ゾルーゲル法の科学」アグネ承風社(1988年)、技術情報協会の「ゾルーゲル法による薄膜コーティング技術」(1995)等に記載のゾルーゲル法、杉本忠夫の「新合成法ゲルーゾル法による単分散粒子の合成とサイズ形態制御」 まてりあ、第35巻、第9号 1012頁から1018頁(1996)記載のゲルーゾル法が好ましい。
【0037】またDegussa社が開発した塩化物を酸水素炎中で高温加水分解により酸化物を作製する方法も好ましい。
【0038】また酸化チタンの場合は上記のゾルーゲル法、ゲルーゾル法、塩化物を酸水素炎中で高温加水分解法がいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」技報堂出版(1997)に記載の硫酸法、塩素法を用いることもできる。
【0039】酸化チタンの場合は上記のゾルーゲル法のうち特にバーブ等の「ジャーナル・オブ・アメリカン・セラミック・ソサエティー 第80巻、第12号、3157ページから3171ページ(1997)」記載のものと、バーンサイド等の「ケミカル・マテリアルズ 第10巻 第9号、2419ページから2425ページ」記載の方法が好ましい。
【0040】導電性支持体は、金属のように支持体そのものに導電性があるものか、または表面に導電剤を含む導電層(導電剤層)を有するガラスもしくはプラスチックの支持体を使用することができる。後者の場合好ましい導電剤としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、炭素、もしくは導電性の金属酸化物(インジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの等)が挙げられる。上記導電剤層の厚さは、0.02〜10μm程度であることが好ましい。
【0041】導電性支持体は表面抵抗が低い程よい。好ましい表面抵抗の範囲としては100Ω/□以下であり、さらに好ましくは40Ω/□以下である。この下限には特に制限はないが、通常0.1Ω/□程度である。
【0042】導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、70%以上が特に好ましい。透明導電性支持体としてはガラスもしくはプラスチックに導電性の金属酸化物を塗設したものが好ましい。この中でもフッ素をドーピングした二酸化スズからなる導電層を低コストのソーダ石灰フロートガラスでできた透明基板上に堆積した導電性ガラスが特に好ましい。また、低コストでフレキシブルな光電変換素子または太陽電池には、透明ポリマーフィルムに上記導電層を設けたものを用いるのがよい。透明ポリマーフィルムには、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN)、シンジオクタチックポリステレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルフォン(PSF)、ポリエステルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等がある。透明導電性支持体を用いる場合、光はその支持体側から入射させることが好ましい。この場合、導電性金属酸化物の塗布量はガラスもしくはプラスチックの支持体1m2当たり0.01〜100gが好ましい。
【0043】透明導電性基板の抵抗を下げる目的で金属リードを用いることが好ましい。金属リードの材質はアルミニウム、銅、銀、金、白金、ニッケル等の金属が好ましく、特にアルミニウム、銀が好ましい。金属リードは透明基板に蒸着、スッパタリング等で設置し、その上にフッ素をドープした酸化スズ、またはITO膜からなる透明導電層を設けることが好ましい。また上記の透明導電層を透明基板に設けたあと、透明導電層上に金属リードを設置することも好ましい。金属リード設置による入射光量の低下は1〜10%、より好ましくは1〜5%である。
【0044】半導体微粒子を導電性支持体上に塗設する方法としては、半導体微粒子の分散液またはコロイド溶液を導電性支持体上に塗布する方法、前述のゾル−ゲル法などが挙げられる。光電変換素子の量産化、液物性や支持体の融通性を考えた場合、湿式の膜付与方式が比較的有利である。湿式の膜付与方式としては、塗布法、印刷法が代表的である。
【0045】半導体微粒子の分散液を作成する方法としては前述のゾル-ゲル法の他、乳鉢ですり潰す方法、ミルを使って粉砕しながら分散する方法、あるいは半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法等が挙げられる。分散媒としては水または各種の有機溶媒(例えばメタノール、エタノール、イソプロピルアルコール、ジクロロメタン、アセトン、アセトニトリル、酢酸エチル等)が挙げられる。分散の際、必要に応じてポリマー、界面活性剤、酸、もしくはキレート剤などを分散助剤として用いてもよい。
【0046】塗布方法としては、アプリケーション系としてローラ法、ディップ法、メータリング系としてエアーナイフ法、ブレード法等、またアプリケーションとメータリングを同一部分でできるものとして、特公昭58−4589号公報に開示されているワイヤーバー法、米国特許2681294号、同2761419号、同2761791号等に記載のスライドホッパ法、エクストルージョン法、カーテン法等が好ましい。また汎用機としてスピン法やスプレー法も好ましく用いられる。
【0047】湿式印刷方法としては、従来から凸版、オフセット、グラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。
【0048】前記方法の中から、液粘度やウェット厚みにより好ましい膜付与方式を選択する。
【0049】液粘度は半導体微粒子の種類や分散性、使用溶媒種、界面活性剤やバインダー等の添加剤により大きく左右される。高粘度液(例えば0.01〜500Poise)ではエクストルージョン法やキャスト法が好ましく、低粘度液(例えば0.1Poise以下)ではスライドホッパー法もしくはワイヤーバー法もしくはスピン法が好ましく、均一な膜にすることが可能である。
【0050】なお、エクストルージョン法による低粘度液の塗布の場合でも塗布量がある程度の量あれば塗布は可能である。
【0051】また半導体微粒子の高粘度ペーストの塗設にはしばしばスクリーン印刷が用いられており、この手法を使うこともできる。
【0052】このように塗布液の液粘度、塗布量、支持体、塗布速度等のパラメータに対応して、適宜ウェット膜の付与方式を選択すればよい。
【0053】さらに、半導体微粒子含有層は単層と限定する必要はない。微粒子の粒径の違った分散液を多層塗布することも可能であり、また半導体の種類が異なる、あるいはバインダー、添加剤の組成が異なる塗布層を多層塗布することもでき、また一度の塗布で膜厚が不足の場合にも多層塗布は有効である。多層塗布には、エクストルージョン法またはスライドホッパー法が適している。また多層塗布をする場合は同時に多層を塗布しても良く、数回から十数回順次重ね塗りしてもよい。さらに順次重ね塗りであればスクリーン印刷法も好ましく使用できる。
【0054】一般に、半導体微粒子含有層の厚みが増大するほど単位投影面積当たりの担持色素量が増えるため光の捕獲率が高くなるが、生成した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。したがって、半導体微粒子含有層には好ましい厚さが存在するが、典型的には0.1〜100μmである。光電池として用いる場合は1〜30μmであることが好ましく、2〜25μmであることがより好ましい。半導体微粒子の支持体1m2当たりの塗布量は0.5〜400g、さらには5〜100gが好ましい。
【0055】半導体微粒子は導電性支持体に塗布した後に粒子同士を電子的にコンタクトさせるため、および塗膜強度の向上や支持体との密着性を向上させるために加熱処理することが好ましい。好ましい加熱処理温度の範囲は40℃以上700℃未満であり、より好ましくは100℃以上600℃以下である。また加熱処理時間は10分〜10時間程度である。ポリマーフィルムなど融点や軟化点の低い支持体を用いる場合は、高温処理は支持体の劣化を招くため、好ましくない。また、コストの観点からもできる限り低温であることが好ましい。低温化は、先に述べた5nm以下の小さい半導体微粒子の併用や鉱酸の存在下での加熱処理等により可能である。
【0056】また、加熱処理後、半導体粒子の表面積を増大させたり、半導体粒子近傍の純度を高め、色素から半導体粒子への電子注入効率を高める目的で、例えば四塩化チタン水溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。
【0057】半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。このため半導体微粒子層を支持体上に塗設した状態での表面積は、投影面積に対して10倍以上であることが好ましく、さらに100倍以上であることが好ましい。この上限には特に制限はないが、通常1000倍程度である。
【0058】本発明では、光電変換の波長域をできるだけ広くし、かつ変換効率を上げるため、2種類以上の色素を混合することができる。そして、目的とする光源の波長域と強度分布に合わせるように混合する色素とその割合を選ぶことができる。具体的には、本発明の色素を2種類またはそれ以上用いてもよいし、本発明の色素と他のポリメチン色素またはRu等の金属錯体色素等と併用することもできる。
【0059】半導体微粒子に色素を吸着させる方法は色素溶液中によく乾燥した半導体微粒子を含有する作用電極を浸漬するか、もしくは色素溶液を半導体微粒子層に塗布して吸着させる方法を用いることができる。前者の場合、浸漬法、ディップ法、ローラ法、エアーナイフ法などが使える。浸漬法の場合、色素の吸着は室温で行ってもよいし、特開平7-249790号に記載されているように加熱還流して行ってもよい。後者の塗布方法としては、ワイヤーバー法、スライドホッパ法、エクストルージョン法、カーテン法、スピン法、スプレー法があり、印刷方法としては、凸版、オフセット、グラビア、スクリーン印刷等がある。
【0060】溶媒は、色素の溶解性に応じて適宜選択できる。例えば、水、アルコール類(メタノール、エタノール、t−ブタノール、ベンジルアルコール等)、ニトリル類(アセトニトリル、プロピオニトリル、3−メトキシプロピオニトリル等)、ニトロメタン、ハロゲン化炭化水素(ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン等)、エーテル類(ジエチルエーテル、テトラヒドロフラン等)、ジメチルスルホキシド、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセタミド等)、N−メチルピロリドン、1,3−ジメチルイミダゾリジノン、3−メチルオキサゾリジノン、エステル類(酢酸エチル、酢酸ブチル等)、炭酸エステル類(炭酸ジエチル、炭酸エチレン、炭酸プロピレン等)、ケトン類(アセトン、2−ブタノン、シクロヘキサノン等)、炭化水素(ヘキサン、石油エーテル、ベンゼン、トルエン等)やこれらの混合溶媒が挙げられる。
【0061】液粘度も半導体微粒子層の形成時と同様に、高粘度液(例えば0.01〜500Poise)ではエクストルージョン法の他、各種印刷法が、低粘度液(例えば0.1Poise以下)ではスライドホッパー法もしくはワイヤーバー法もしくはスピン法が適していて、均一な膜にすることが可能である。
【0062】このように色素塗布液の液粘度、塗布量、支持体、塗布速度等のパラメータに対応して、適宜付与方式を選択すればよい。塗布後の色素吸着に要する時間は、量産化を考えた場合、なるべく短い方がよい。
【0063】未吸着の色素の存在は素子性能の外乱になるため、吸着後速やかに洗浄によって除去することが好ましい。湿式洗浄槽を使い、アセトニトリル等の極性溶剤、アルコール系溶剤のような有機溶媒で洗浄を行うのがよい。また、吸着色素量を増大させるため、加熱処理を吸着前に行うことが好ましい。加熱処理後、半導体微粒子表面に水が吸着するのを避けるため、常温に戻さず40〜80℃の間で素早く色素を吸着させることも好ましい。
【0064】色素の使用量は、全体で、支持体1m2当たり0.01〜100mモルが好ましい。また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.01〜1mモルが好ましい。このような色素量とすることによって、半導体における増感効果が十分に得られる。これに対し、色素量が少ないと増感効果が不十分となり、色素量が多すぎると、半導体に付着していない色素が浮遊し増感効果を低減させる原因となる。
【0065】また、会合など色素同士の相互作用を低減する目的で無色の化合物を共吸着させてもよい。共吸着させる疎水性化合物としてはカルボキシ基を有するステロイド化合物(例えばケノデオキシコール酸)等が挙げられる。また、紫外線吸収剤を併用することもできる。
【0066】また、余分な色素の除去を促進する目的で、色素を吸着した後にアミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としてはピリジン、4−tert−ブチルピリジン、ポリビニルピリジン等が挙げられる。これらが液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
【0067】以下、電荷移動層と対極について詳しく説明する。電荷移動層は色素の酸化体に電子を補充する機能を有する電荷輸送材料を含有する層である。本発明で用いることのできる代表的な電荷輸送材料の例としては、イオン輸送材料として、酸化還元対のイオンが溶解した溶液(電解液)、酸化還元対を有機溶媒に溶解した液体をポリマーマトリクスに含浸したいわゆるゲル電解質、酸化還元対イオンを含有する溶融塩電解質、さらには固体電解質が挙げられる。また、イオンがかかわる電荷輸送材料のほかに、固体中のキャリヤー移動が電気伝導にかかわる材料として電子輸送材料や正孔(ホール)輸送材料を用いることもできる。
【0068】本発明で使用する電解液は電解質、溶媒、および添加物から構成されることが好ましい。本発明の電解質はI2とヨウ化物の組み合わせ(ヨウ化物としてはLiI、NaI、KI、CsI、CaI2などの金属ヨウ化物、あるいはテトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイドなど4級アンモニウム化合物のヨウ素塩など)、Br2と臭化物の組み合わせ(臭化物としてはLiBr、NaBr、KBr、CsBr、CaBr2などの金属臭化物、あるいはテトラアルキルアンモニウムブロマイド、ピリジニウムブロマイドなど4級アンモニウム化合物の臭素塩など)のほか、フェロシアン酸塩−フェリシアン酸塩やフェロセン−フェリシニウムイオンなどの金属錯体、ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィドなどのイオウ化合物、ビオロゲン色素、ヒドロキノン−キノンなどを用いることができる。この中でもI2とLiIやピリジニウムヨーダイド、イミダゾリウムヨーダイドなど4級アンモニウム化合物のヨウ素塩を組み合わせた電解質が本発明では好ましい。上述した電解質は混合して用いてもよい。また、電解質はEP-718288号、WO95/18456号、J. Electrochem. Soc., Vol.143,No.10,3099(1996)、Inorg. Chem. 1996,35,1168-1178に記載された室温で溶融状態の塩(溶融塩)を使用することもできる。溶融塩を電解質として使用する場合、溶媒は使用しなくても構わない。
【0069】好ましい電解質濃度は0.1M以上15M以下であり、さらに好ましくは0.2M以上10M以下である。また、電解質にヨウ素を添加する場合の好ましいヨウ素の添加濃度は0.01M以上0.5M以下である。
【0070】本発明で電解質に使用する溶媒は、粘度が低くイオン易動度を向上したり、もしくは誘電率が高く有効キャリアー濃度を向上したりして、優れたイオン伝導性を発現できる化合物であることが望ましい。このような溶媒としては、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3−メチル−2−オキサゾリジノンなどの複素環化合物、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、ジメチルスルフォキシド(DMSO)、スルフォランなど非プロトン極性物質、水などを用いることができる。
【0071】また、本発明では、J. Am. Ceram. Soc .,80 (12)3157-3171(1997)に記載されているようなter-ブチルピリジンや、2−ピコリン、2,6−ルチジン等の塩基性化合物を添加することもできる。塩基性化合物を添加する場合の好ましい濃度範囲は0.05M以上2M以下である。
【0072】本発明では、電解質はポリマー添加、オイルゲル化剤添加、多官能モノマー類を含む重合、ポリマーの架橋反応等の手法によりゲル化(固体化)させて使用することもできる。ポリマー添加によりゲル化させる場合は、¨Polymer Electrolyte Reviews-1および2¨(J.R.MacCallumとC.A. Vincentの共編、ELSEVIER APPLIED SCIENCE)に記載された化合物を使用することができるが、特にポリアクリロニトリル、ポリフッ化ビニリデンを好ましく使用することができる【0073】本発明では、電解質の替わりに有機または無機あるいはこの両者を組み合わせた正孔輸送材料を使用することができる。本発明に適用可能な有機正孔輸送材料としては、芳香族アミン化合物、ポリチオフェン化合物、ポリピロール化合物、ポリアセチレン化合物、ポリアニリン化合物、ポリトルイジン化合物などがある。また、有機正孔輸送材料にはNature,Vol.395, 8 Oct. 1998,p583-585に記載されているようにドーパントレベルをコントロールするためにトリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネートのようなカチオンラジカルを含有する化合物を添加したり、酸化物半導体表面のポテンシャル制御(空間電荷層の補償)を行うためにLi[(CF3SO2)2N]のような塩を添加しても構わない。
【0074】有機正孔輸送材料は真空蒸着法,キャスト法,塗布法,スピンコート法、浸漬法、電解重合法、光電解重合法等の手法により電極内部に導入することができる。また、正孔輸送材料を電解液の替わりに使用するときは短絡防止のためElectorochim. Acta 40, 643-652(1995)に記載されているスプレーパイロリシス等の手法を用いて二酸化チタン薄層を下塗り層として塗設することが好ましい。
【0075】無機固体化合物を電解質の替わりに使用する場合、ヨウ化銅(p-CuI)(J. Phys. D:Appl. Phys. 31(1998)1492-1496)、チオシアン化銅(Thin Solid Films 261(1995)307-310、J. Appl. Phys. 80(8),15 October 1996, p4749-4754、Chem.Mater. 1998, 10, 1501-1509、Semicond. Sci. Technol. 10, 1689-1693)等をキャスト法,塗布法,スピンコート法、浸漬法、電解メッキ法等の手法により電極内部に導入することができる。
【0076】電荷移動層の形成方法に関しては2通りの方法が考えられる。1つは増感色素を担持させた半導体微粒子含有層の上に先に対極を貼り合わせておき、その間隙に液状の電荷移動層を挟み込む方法である。もう1つは半導体微粒子含有層上に直接電荷移動層を付与する方法で、対極はその後付与することになる。
【0077】前者の場合の電荷移動層の挟み込み方法として、浸漬等による毛管現象を利用する常圧プロセスと常圧より低い圧力にして気相を液相に置換する真空プロセスが利用できる。
【0078】後者の場合、湿式の電荷移動層においては未乾燥のまま対極を付与し、エッジ部の液漏洩防止措置も施すことになる。またゲル電解質の場合には湿式で塗布して重合等の方法により固体化する方法もあり、その場合には乾燥、固定化した後に対極を付与することもできる。電解液のほか湿式有機正孔輸送材料やゲル電解質を付与する方法としては、半導体微粒子含有層や色素の付与と同様に、浸漬法、ローラ法、ディップ法、エアーナイフ法、エクストルージョン法、スライドホッパー法、ワーヤーバー法、スピン法、スプレー法、キャスト法、各種印刷法等が考えられる。固体電解質や固体の正孔(ホール)輸送材料の場合には真空蒸着法やCVD法等のドライ成膜処理で電荷移動層を形成し、その後対極を付与することもできる。
【0079】量産化を考える場合、固体化できない電解液や湿式の正孔輸送材料の場合には、塗設後速やかにエッジ部分を封止することで対応も可能であるが、固体化可能な正孔輸送材料の場合は湿式付与により正孔輸送層を膜形成した後、例えば光重合や熱ラジカル重合等の方法により固体化することがより好ましい。このように膜付与方式は液物性や工程条件により適宜選択すればよい。
【0080】なお、電荷移動層中の水分としては10,000ppm以下が好ましく、さらに好ましくは2,000ppm以下であり、特に好ましくは100ppm以下である。
【0081】対極は、光電変換素子を光電池としたとき、光電池の正極として働くものである。対極は通常前述の導電性支持体と同様に導電性層を有する支持体を用いることもできるが、強度や密封性が十分に保たれるような構成では支持体は必ずしも必要でない。具体的に対極に用いる導電性の材料としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、炭素、または導電性の金属酸化物(インジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの等)が挙げられる。対極の厚さは、特に制限はないが、3nm以上10μm以下であることが好ましい。金属材料である場合は、その膜厚は好ましくは5μm以下であり、さらに好ましくは5nm以上3μm以下の範囲である。
【0082】感光層に光が到達するためには、前述の導電性支持体と対極の少なくとも一方は実質的に透明でなければならない。本発明の光電池においては、導電性支持体が透明であって太陽光を支持体側から入射させるのが好ましい。この場合対極は光を反射する性質を有することがさらに好ましい。本発明において対極としては金属または導電性の酸化物を蒸着したガラスまたはプラスチック、あるいは金属薄膜を使用できる。
【0083】対極の塗設については電荷移動層の付与で記したように、電荷移動層の上に付与する場合と先に半導体微粒子含有層上に付与する場合の2通りある。いずれの場合も、対極材の種類や電荷移動層の種類により、適宜、電荷移動層上または半導体微粒子含有層上に対極材を塗布、ラミネート、蒸着、貼り合わせなどの方法により形成可能である。例えば、対極を貼り合わせる場合は、上記の導電性材料を塗布、蒸着、CVD等の手法により導電層として設けられた基板を貼り合わせることができる。また、電荷移動層が固体の場合には、その上に直接、前述の導電性材料を塗布、メッキ、PVD、CVD等の手法で対極を形成することができる。
【0084】さらに、作用電極の導電性支持体または対極に保護層、反射防止膜など、必要な他の機能の層を設けることも可能である。このような層を多層にて機能分離させる場合、同時多層塗布や逐次で塗布することが可能であるが、生産性を優先させると同時多層塗布がより好ましい。同時多層塗布では、生産性および膜付与均一性を考えた場合、スライドホッパー法やエクストルージョン法が適している。また、これらの機能層はその材料により、蒸着や貼り付けなどの手法を用いて設けることもできる。
【0085】本発明の光電池では構成物の劣化や内容物の揮散を防止するために電池の側面をポリマーや接着剤等で密封するのが好ましい。
【0086】
【実施例】以下、本発明を実施例によって具体的に説明する。
実施例11.二酸化チタン粒子含有塗布液の作製オートクレーブ温度を230℃にした以外はバーブのジャーナル・オブ・アメリカン・セラミック・ソサイエティ 80巻3157頁記載の方法と同様の方法で二酸化チタン濃度11重量%の二酸化チタン分散物を得た。できた二酸化チタン粒子の平均サイズは約10nmであった。この分散物に二酸化チタンに対し30重量%のポリエチレングリコール(分子量20000、和光純薬製)を添加し、混合し塗布液を得た。
【0087】2.色素を吸着した二酸化チタン電極の作成フッ素をドープした酸化スズをコーティングした透明導電性ガラス(日本板硝子製、表面抵抗は約10Ω/□)の導電面側にこの塗布液をドクターブレードで140μmの厚みで塗布し、25℃で30分間乾燥した後、電気炉(ヤマト科学製マッフル炉FP−32型)で450℃にて30分間焼成した。二酸化チタンの塗布量は15g/m2であり、膜厚は10μmであった。ガラスを取り出し冷却した後、表1に示す色素のエタノール溶液(3×10-4モル/リットル)に3時間浸漬した。色素の染着したガラスを4−tert−ブチルピリジンに15分間浸漬した後、エタノールで洗浄し自然乾燥させた。色素の塗布量は、色素の種類に応じ、適宜0.1〜10mモル/m2の範囲から選択した。
【0088】3.光電池の作成上述のようにして作成した色増感されたTiO2電極基板(2cm×2cm)をこれと同じ大きさの白金蒸着ガラスと重ね合わせた(図1参照)。次に、両ガラスの隙間に毛細管現象を利用して電解液(アセトニトリルとN−メチル−2−オキサゾリジノンの体積比90対10の混合物を溶媒とした沃素0.05モル/l、沃化リチウム0.5モル/lの溶液)をしみこませ、TiO2電極中に導入し、光電池を得た。本実施例により、図1に示したとおり、導電性ガラス1(ガラス上に導電剤層2が設層されたもの)、TiO2電極3、色素層4、電解液5、白金層6およびガラス7が順に積層された光電池が作成された。
【0089】4.光電変換波長と光電変換効率の測定本発明の光電変換素子の光電変換能をオプテル社製のIPCE(Incident Photonto Current Conversion Efficiency)測定装置によって測定した。それぞれの色素を用いた光電池が最大変換能を示す波長とその単色光での光電変換効率を表1にまとめた。
【0090】
【表1】

【0091】本発明のいずれの色素も高い光電変換特性が認められる。
【0092】
【発明の効果】本発明により高い光電変換特性を有する有機色素を用いた色素増感光電変換素子および光電池が提供された。




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013