米国特許情報 | 欧州特許情報 | 国際公開(PCT)情報 | Google の米国特許検索
 
     特許分類
A 農業
B 衣類
C 家具
D 医学
E スポ−ツ;娯楽
F 加工処理操作
G 机上付属具
H 装飾
I 車両
J 包装;運搬
L 化学;冶金
M 繊維;紙;印刷
N 固定構造物
O 機械工学
P 武器
Q 照明
R 測定; 光学
S 写真;映画
T 計算機;電気通信
U 核技術
V 電気素子
W 発電
X 楽器;音響


  ホーム -> 電気素子 -> イビデン株式会社

発明の名称 ウエハプローバ、および、ウエハプローバに使用されるセラミック基板
発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2001−118892(P2001−118892A)
公開日 平成13年4月27日(2001.4.27)
出願番号 特願2000−240815(P2000−240815)
出願日 平成12年8月9日(2000.8.9)
代理人 【識別番号】100086586
【弁理士】
【氏名又は名称】安富 康男 (外2名)
発明者 伊藤 淳 / 平松 靖二 / 伊藤 康隆 / 古川 和正
要約 目的


構成
特許請求の範囲
【請求項1】 セラミック基板の表面に導体層が形成されてなり、前記導体層の厚さは、セラミック基板の厚さより薄いことを特徴とするウエハプローバ。
【請求項2】 前記セラミック基板と前記導体層との厚さの比率(セラミック基板の厚さ/導体層の厚さ)は、5を超え、10000以下である請求項1に記載のウエハプローバ。
【請求項3】 前記導体層は、チャックトップ導体層である請求項1または2に記載のウエハプローバ。
【請求項4】 前記セラミック基板には温度制御手段が設けられてなる請求項1〜3のいずれか1に記載のウエハプローバ。
【請求項5】 前記セラミック基板は、窒化物セラミック、炭化物セラミックおよび酸化物セラミックに属するセラミックから選ばれる少なくとも1種である請求項1〜4のいずれか1に記載のウエハプローバ。
【請求項6】 前記温度制御手段は、ペルチェ素子である請求項4または5に記載のウエハプローバ。
【請求項7】 前記温度制御手段は、発熱体である請求項4または5に記載のウエハプローバ。
【請求項8】 前記セラミック基板中には、少なくとも1層の導体層が形成されてなる請求項1〜7のいずれか1に記載のウエハプローバ。
【請求項9】 前記セラミック基板の表面には溝が形成されてなる請求項1〜8のいずれか1に記載のウエハプローバ。
【請求項10】 前記セラミック基板の表面には溝が形成され、その溝には、空気の吸引孔が形成されてなる請求項1〜9のいずれか1に記載のウエハプローバ。
【請求項11】 セラミック基板の表面に導体層が形成されてなり、前記導体層の厚さは、セラミック基板の厚さより薄いことを特徴とするウエハプローバに使用されるセラミック基板。
【請求項12】 前記セラミック基板と前記導体層との厚さの比率(セラミック基板の厚さ/導体層の厚さ)は、5を超え、10000以下である請求項11に記載のウエハプローバに使用されるセラミック基板。
【請求項13】 前記導体層は、チャックトップ導体層である請求項11または12に記載のウエハプローバに使用されるセラミック基板。
【請求項14】 前記セラミック基板には温度制御手段が設けられてなる請求項11〜13のいずれか1に記載のウエハプローバに使用されるセラミック基板。
【請求項15】 前記セラミック基板は、窒化物セラミック、炭化物セラミックおよび酸化物セラミックに属するセラミックから選ばれる少なくとも1種である請求項11〜14のいずれか1に記載のウエハプローバに使用されるセラミック基板。
【請求項16】 前記温度制御手段は、ペルチェ素子である請求項14または15に記載のウエハプローバに使用されるセラミック基板。
【請求項17】 前記温度制御手段は、発熱体である請求項14または15に記載のウエハプローバに使用されるセラミック基板。
【請求項18】 前記セラミック基板中には、少なくとも1層の導体層が形成されてなる請求項11〜17のいずれか1に記載のウエハプローバに使用されるセラミック基板。
【請求項19】 前記セラミック基板の表面には溝が形成されてなる請求項11〜18のいずれか1に記載のウエハプローバに使用されるセラミック基板。
【請求項20】 前記セラミック基板の表面には溝が形成され、その溝には、空気の吸引孔が形成されてなる請求項11〜19のいずれか1に記載のウエハプローバに使用されるセラミック基板。
発明の詳細な説明
【0001】
【発明の属する技術分野】本発明は、主に半導体産業において使用されるウエハプローバおよびウエハプローバに使用されるセラミック基板に関し、特には、薄くて軽く、昇温降温特性に優れるウエハプローバおよびウエハプローバに使用されるセラミック基板に関する。
〔発明の詳細な説明〕
【0002】
【従来の技術】半導体は種々の産業において必要とされる極めて重要な製品であり、半導体チップは、例えば、シリコン単結晶を所定の厚さにスライスしてシリコンウエハを作製した後、このシリコンウエハに種々の回路等を形成することにより製造される。この半導体チップの製造工程においては、シリコンウエハの段階でその電気的特性が設計通りに動作するか否かを測定してチェックするプロービング工程が必要であり、そのために所謂プローバが用いられる。
【0003】このようなプローバとして、例えば、特許第2587289号公報、特公平3−40947号公報、特開平11−31724号公報等には、アルミニウム合金やステンレス鋼などの金属製チャックトップを有するウエハプローバが開示されている(図13参照)。このようなウエハプローバでは、例えば、図12に示すように、ウエハプローバ501上にシリコンウエハWを載置し、このシリコンウエハWにテスタピンを持つプローブカード601を押しつけ、加熱、冷却しながら電圧を印加して導通テストを行う。なお、図12において、V3 は、プローブカード601を印加する電源33、V2 は、抵抗発熱体41に印加する電源32、V1 は、チャックトップ導体層2とガード電極5に印加する電源31であり、この電源31は、グランド電極6にも接続され、設置されている。
【0004】
【発明が解決しようとする課題】ところが、このような金属製のチャックトップを有するウエハプローバには、次のような問題があった。まず、金属製であるため、チャックトップの厚みは15mm程度と厚くしなければならない。このようにチャックトップを厚くするのは、薄い金属板では、プローブカードのテスタピンによりチャックトップが押され、チャックトップの金属板に反りや歪みが発生してしまい、金属板上に載置されるシリコンウエハが破損したり傾いたりしてしてしまうからである。このため、チャックトップを厚くする必要があるが、その結果、チャックトップの重量が大きくなり、またかさばってしまう。
【0005】また、熱伝導率が高い金属を使用しているにもかかわらず、昇温、降温特性が悪く、電圧や電流量の変化に対してチャックトップ板の温度が迅速に追従しないため温度制御をしにくく、高温でシリコンウエハを載置すると温度制御不能になってしまう。
【0006】本願発明は、上記課題に鑑み、軽量で昇温、降温特性に優れており、しかも、プローブカードを押圧した場合にも反りがなく、シリコンウエハの破損や測定ミスを有効に防止することができるウエハプローバを提供することを目的とする。
【0007】
【課題を解決するための手段】本発明者らは、上記課題を解決するために鋭意研究した結果、金属製のチャックトップに代えて、剛性の高いセラミックにチャックトップ導体層を形成し、セラミック部分の厚さをチャックトップ導体層の厚さより厚くすることで、反りが発生しないウエハプローバが得られることを見いだした。
【0008】さらに、金属製のチャックトップを有するウエハプローバでは、熱伝導率が高い金属を使用しているにもかかわらず、昇温、降温特性が悪くなるのは、金属板の厚みが厚すぎて熱容量が大きくなってしまうためであることを突き止めるとともに、セラミックを使用することにより、熱伝導率が金属より劣っていても、厚みを薄くして熱容量を小さくすることができ、昇温、降温特性を改善することができるという、従来の常識とは全く逆の新たな技術思想に想到し、本発明を完成するに至った。
【0009】即ち、本発明は、セラミック基板の表面に導体層(以下、チャックトップ導体層ともいう)が形成されてなり、上記チャックトップ導体層の厚さは、セラミック基板の厚さより薄いことを特徴とするウエハプローバおよびウエハプローバに使用されるセラミック基板である。本発明のセラミック基板は、ウエハプローバに使用され、具体的には、半導体ウエハのプロービング用ステージ(いわゆるチャックトップ)として機能する。なお、半導体と同種のセラミック基板の上に金属薄膜を形成したステージは、実開平62−180944号公報に開示があるが、ここには、金属薄膜の厚さとセラミック基板の厚さと関係については記載されておらず、示唆もない。
【0010】上記ウエハプローバ(以下、ウエハプローバに使用されるセラミック基板も含む)において、上記セラミック基板と上記導体層との厚さの比率(セラミック基板の厚さ/導体層の厚さ)は、5を超え、10000以下であることが望ましい。また、上記ウエハプローバにおいて、上記導体層は、チャックトップ導体層であることが望ましい。また、上記ウエハプローバにおいて、上記セラミック基板には温度制御手段が設けられていることが望ましい。
【0011】また、上記ウエハプローバにおいて、上記セラミック基板は、窒化物セラミック、炭化物セラミックおよび酸化物セラミックに属するセラミックから選ばれる少なくとも1種であることが望ましい。また、上記温度制御手段は、ペルチェ素子であるか、または、発熱体であることが望ましい。また、上記ウエハプローバにおいて、上記セラミック基板中には、少なくとも1層の導体層が形成されいることが望ましく、上記セラミック基板の表面には溝が形成されていることが望ましい。また、上記セラミック基板の表面には溝が形成され、その溝には、空気の吸引孔が形成されていることが望ましい。
【0012】
【発明の実施の形態】本発明のウエハプローバは、セラミック基板の表面にチャックトップ導体層が形成されてなり、上記チャックトップ導体層の厚さは、セラミック基板の厚さより薄いことを特徴とする。本発明では、セラミック基板の厚さよりもチャックトップ導体層の厚さを薄くすることにより、チャックトップ部分の平均熱容量を小さくすることができ、ウエハプローバの昇温、降温特性を改善することができる。
【0013】また、剛性の高いセラミックからなる基板を使用しているため、プローブカードのテスタピンによりチャックトップが押されてもチャックトップが反ることはなく、チャックトップの厚さを金属に比べて小さくすることができる。
【0014】また、チャックトップの厚さを金属に比べて小さくすることができるため、熱伝導率が金属より低いセラミックであっても結果的に金属に比べて熱容量が小さくなり、昇温、降温特性を改善することができる。
【0015】図1は、本発明のウエハプローバの一実施形態を模式的に示した断面図であり、図2は、その平面図であり、図3は、その底面図であり、図4は、図1に示したウエハプローバにおけるA−A線断面図である。
【0016】このウエハプローバでは、平面視円形状のセラミック基板3の表面に、同心円形状の溝7が形成されるとともに、溝7の一部にシリコンウエハを吸引するための複数の吸引孔8が設けられており、溝7を含むセラミック基板3の大部分にシリコンウエハの電極と接続するためのチャックトップ導体層2が円形状に形成されている。このチャックトップ導体層2は、セラミック基板3の厚さよりも薄く形成されている。
【0017】一方、セラミック基板3の底面には、シリコンウエハの温度をコントロールするために、図3に示したような平面視同心円形状の発熱体41が設けられており、発熱体41の両端には、外部端子ピン191が接続、固定され、セラミック基板3の内部には、ストレイキャパシタやノイズを除去するためにガード電極5とグランド電極6とが設けられている。
【0018】本発明のウエハプローバは、例えば、図1〜4に示したような構成を有するものである。以下において、上記ウエハプローバを構成する各部材、および、本発明のウエハプローバの他の実施形態について、順次詳細に説明していくことにする。
【0019】本発明におけるチャックトップのセラミック基板の厚さは、チャックトップ導体層より厚いことが必要であり、具体的には、1〜10mmが望ましい。また、本発明においては、シリコンウエハの裏面を電極として使用するため、セラミック基板の表面にチャックトップ導体層が形成されている必要がある。
【0020】上記チャックトップ導体層の厚さは、1〜20μmが望ましい。1μm未満では抵抗値が高くなりすぎて電極として働かず、一方、20μmを超えると導体の持つ応力によって剥離しやすくなってしまうからである。また、セラミック基板とチャックトップ導体層の厚さの比率(セラミック基板の厚さ/チャックトップ導体層の厚さ)は、5を超え、10000以下であることが望ましく、100〜1000であることが最適である。上記比率が10000を超えると、材料のもつ熱伝導率の特性が失われてしまい、一方、5以下では、金属ほどではないにしろ、反りが発生してしまい、支持容器内に柱を形成しなければならなくなる。
【0021】また、上記比率が100未満であると、セラミック基板の厚さが薄いため、反り等が発生する場合があり、一方、上記比率が1000を超えると、セラミック基板の厚さが厚いため、全体の熱容量が大きくなり、昇温・降温特性が劣化することがある。
【0022】チャックトップ導体層としては、例えば、銅、チタン、クロム、ニッケル、貴金属(金、銀、白金等)、タングステン、モリブデンなどの高融点金属から選ばれる少なくとも1種の金属を使用することができる。チャップ導体層は、金属や導電性セラミックからなる多孔質体であってもよい。多孔質体の場合は、後述するような吸引吸着のための溝を形成する必要がなく、溝の存在を理由としたウエハの破損を防止することができるだけでなく、表面全体で均一な吸引吸着を実現できるからである。このような多孔質体としては、金属焼結体を使用することができる。また、多孔質体を使用した場合は、その厚さは、1〜200μmで使用することができる。多孔質体とセラミック基板との接合は、半田やろう材を用いる。
【0023】チャックトップ導体層としては、ニッケルを含むものであることが望ましい。硬度が高く、テスタピンの押圧に対しても変形等しにくいからである。チャックトップ導体層の具体的な構成としては、例えば、初めにニッケルスパッタリング層を形成し、その上に無電解ニッケルめっき層を設けたものや、チタン、モリブデン、ニッケルをこの順序でスパッタリングし、さらにその上にニッケルを無電解めっきもしくは電解めっきで析出させたもの等が挙げられる。
【0024】また、チタン、モリブデン、ニッケルをこの順序でスパッタリングし、さらにその上に銅およびニッケルを無電解めっきで析出させたものであってもよい。銅層を形成することでチャックトップ電極の抵抗値を低減させることができるからである。
【0025】さらに、チタン、銅をこの順でスパッタリングし、さらにその上にニッケルを無電解めっきもしくは電解めっきで析出させたものであってもよい。また、クロム、銅をこの順でスパッタリングし、さらにその上にニッケルを無電解めっきもしくは電解めっきで析出させたものとすることも可能である。
【0026】上記チタン、クロムは、セラミックとの密着性を向上させることができ、また、モリブデンはニッケルとの密着性を改善することができる。チタン、クロムの厚みは0.1〜0.5μm、モリブデンの厚みは0.5〜7.0μm、ニッケルの厚みは0.4〜2.5μmが望ましい。
【0027】上記チャックトップ導体層の表面には、貴金属層(金、銀、白金、パラジウム)が形成されていることが望ましい。貴金属層は、卑金属のマイグレーションによる汚染を防止することができるからである。貴金属層の厚さは、0.01〜15μmが望ましい。
【0028】本発明のウエハプローバで使用されるセラミック基板は、窒化物セラミック、炭化物セラミックおよび酸化物セラミックに属するセラミックから選ばれる少なくとも1種であることが望ましい。
【0029】上記窒化物セラミックとしては、金属窒化物セラミック、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等が挙げられる。また、上記炭化物セラミックとしては、金属炭化物セラミック、例えば、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等が挙げられる。
【0030】上記酸化物セラミックとしては、金属酸化物セラミック、例えば、アルミナ、ジルコニア、コージェライト、ムライト等が挙げられる。これらのセラミックは単独で用いてもよく、2種以上を併用してもよい。
【0031】これらのセラミックの中では、窒化物セラミック、炭化物セラミックの方が酸化物セラミックに比べて望ましい。熱伝導率が高いからである。また、窒化物セラミックの中では窒化アルミニウムが最も好適である。熱伝導率が180W/m・Kと最も高いからである。
【0032】上記セラミック中には、カーボンを100〜2000ppm含むことが望ましい。セラミック内の電極パターンを隠蔽し、かつ、高輻射熱が得られるからである。カーボンは、X線回折で検出可能な結晶質または検出不能な非晶質の一方または両方であってもよい。
【0033】本発明においては、セラミック基板に温度制御手段を設けておくことが望ましい。加熱または冷却しながらシリコンウエハの導通試験を行うことができるからである。
【0034】上記温度制御手段としては図1に示した発熱体41のほかに、ペルチェ素子であってもよい。発熱体を設ける場合は、冷却手段としてエアー等の冷媒の吹きつけ口などを設けておいてもよい。発熱体は、複数層設けてもよい。この場合は、各層のパターンは相互に補完するように形成されて、加熱面からみるとどこかの層にパターンが形成された状態が望ましい。例えば、互いに千鳥の配置になっている構造である。
【0035】発熱体としては、例えば、金属または導電性セラミックの焼結体、金属箔、金属線等が挙げられる。金属焼結体としては、タングステン、モリブデンから選ばれる少なくとも1種が好ましい。これらの金属は比較的酸化しにくく、発熱するに充分な抵抗値を有するからである。
【0036】また、導電性セラミックとしては、タングステン、モリブデンの炭化物から選ばれる少なくとも1種を使用することができる。さらに、セラミック基板の外側に発熱体を形成する場合には、金属焼結体としては、貴金属(金、銀、パラジウム、白金)、ニッケルを使用することが望ましい。具体的には銀、銀−パラジウムなどを使用することができる。上記金属焼結体に使用される金属粒子は、球状、リン片状、もしくは球状とリン片状の混合物を使用することができる。
【0037】金属焼結体中には、金属酸化物を添加してもよい。上記金属酸化物を使用するのは、窒化物セラミックまたは炭化物セラミックと金属粒子を密着させるためである。上記金属酸化物により、窒化物セラミックまたは炭化物セラミックと金属粒子との密着性が改善される理由は明確ではないが、金属粒子表面および窒化物セラミックまたは炭化物セラミックの表面はわずかに酸化膜が形成されており、この酸化膜同士が金属酸化物を介して焼結して一体化し、金属粒子と窒化物セラミックまたは炭化物セラミックが密着するのではないかと考えられる。
【0038】上記金属酸化物としては、例えば、酸化鉛、酸化亜鉛、シリカ、酸化ホウ素(B23 )、アルミナ、イットリア、チタニアから選ばれる少なくとも1種が好ましい。これらの酸化物は、発熱体の抵抗値を大きくすることなく、金属粒子と窒化物セラミックまたは炭化物セラミックとの密着性を改善できるからである。
【0039】上記金属酸化物は、金属粒子に対して0.1重量%以上10重量%未満であることが望ましい。抵抗値が大きくなりすぎず、金属粒子と窒化物セラミックまたは炭化物セラミックとの密着性を改善することができるからである。
【0040】また、酸化鉛、酸化亜鉛、シリカ、酸化ホウ素(B23 )、アルミナ、イットリア、チタニアの割合は、金属酸化物の全量を100重量部とした場合に、酸化鉛が1〜10重量部、シリカが1〜30重量部、酸化ホウ素が5〜50重量部、酸化亜鉛が20〜70重量部、アルミナが1〜10重量部、イットリアが1〜50重量部、チタニアが1〜50重量部が好ましい。但し、これらの合計が100重量部を超えない範囲で調整されることが望ましい。これらの範囲が特に窒化物セラミックとの密着性を改善できる範囲だからである。
【0041】発熱体をセラミック基板の表面に設ける場合は、発熱体の表面は、金属層410で被覆されていることが望ましい(図11(e)参照)。発熱体は、金属粒子の焼結体であり、露出していると酸化しやすく、この酸化により抵抗値が変化してしまう。そこで、表面を金属層で被覆することにより、酸化を防止することができるのである。
【0042】金属層の厚さは、0.1〜10μmが望ましい。発熱体の抵抗値を変化させることなく、発熱体の酸化を防止することができる範囲だからである。被覆に使用される金属は、非酸化性の金属であればよい。具体的には、金、銀、パラジウム、白金、ニッケルから選ばれる少なくとも1種以上が好ましい。なかでもニッケルがさらに好ましい。発熱体には電源と接続するための端子が必要であり、この端子は、半田を介して発熱体に取り付けるが、ニッケルは半田の熱拡散を防止するからである。接続端子しては、コバール製の端子ピンを使用することができる。なお、発熱体をヒータ板内部に形成する場合は、発熱体表面が酸化されることがないため、被覆は不要である。発熱体をヒータ板内部に形成する場合、発熱体の表面の一部が露出していてもよい。
【0043】発熱体として使用する金属箔としては、ニッケル箔、ステンレス箔をエッチング等でパターン形成して発熱体としたものが望ましい。パターン化した金属箔は、樹脂フィルム等ではり合わせてもよい。金属線としては、例えば、タングステン線、モリブデン線等が挙げられる。
【0044】温度制御手段としてペルチェ素子を使用する場合は、電流の流れる方向を変えることにより発熱、冷却両方行うことができるため有利である。ペルチェ素子は、図7に示すように、p型、n型の熱電素子440を直列に接続し、これをセラミック板441などに接合させることにより形成される。ペルチェ素子としては、例えば、シリコン・ゲルマニウム系、ビスマス・アンチモン系、鉛・テルル系材料等が挙げられる。
【0045】本発明では、温度制御手段とチャックトップ導体層との間に少なくとも1層の導電層が形成されていることが望ましい。図1におけるガード電極5とグランド電極6が上記導体層に相当する。ガード電極5は、測定回路内に介在するストレイキャパシタをキャンセルするための電極であり、測定回路(即ち、図1のチャックトップ導体層2)の接地電位が与えられている。また、グランド電極6は、温度制御手段からのノイズをキャンセルするために設けられている。これらの電極の厚さは、1〜20μmが望ましい。薄すぎると、抵抗値が高くなり、厚すぎるとセラミック基板が反ったり、熱衝撃性が低下するからである。
【0046】これらのガード電極5、グランド電極6は、図4に示したような格子状に設けられていることが望ましい。即ち、円形状の導体層51の内部に矩形状の導体層非形成部52が多数整列して存在する形状である。このような形状としたのは、導体層上下のセラミック同士の密着性を改善するためである。本発明のウエハプローバのチャックトップ導体層形成面には図2に示したように溝7と空気の吸引孔8が形成されていることが望ましい。吸引孔8は、複数設けられて均一な吸着が図られる。シリコンウエハWを載置して吸引孔8から空気を吸引してシリコンウエハWを吸着させることができるからである。
【0047】本発明におけるウエハプローバとしては、例えば、図1に示すようにセラミック基板3の底面に発熱体41が設けられ、発熱体41とチャックトップ導体層2との間にガード電極5の層とグランド電極6の層とがそれぞれ設けられた構成のウエハプローバ101、図5に示すようにセラミック基板3の内部に扁平形状の発熱体42が設けられ、発熱体42とチャックトップ導体層2との間にガード電極5とグランド電極6とが設けられた構成のウエハプローバ201、図6に示すようにセラミック基板3の内部に発熱体である金属線43が埋設され、金属線43とチャックトップ導体層2との間にガード電極5とグランド電極6とが設けられた構成のウエハプローバ301、図7に示すようにペルチェ素子44(熱電素子440とセラミック基板441からなる)がセラミック基板3の外側に形成され、ペルチェ素子44とチャックトップ導体層2との間にガード電極5とグランド電極6とが設けられた構成のウエハプローバ401等が挙げられる。いずれのウエハプローバも、溝7と吸引孔8とを必ず有している。
【0048】本発明では、図1〜7に示したようにセラミック基板3の内部に発熱体42、43が形成され(図5〜6)、セラミック基板3の内部にガード電極5、グランド電極6(図1〜7)が形成されるため、これらと外部端子とを接続するための接続部(スルーホール)16、17、18が必要となる。スルーホール16、17、18は、タングステンペースト、モリブデンペーストなどの高融点金属、タングステンカーバイド、モリブデンカーバイドなどの導電性セラミックを充填することにより形成される。
【0049】また、接続部(スルーホール)16、17、18の直径は、0.1〜10mmが望ましい。断線を防止しつつ、クラックや歪みを防止できるからである。このスルーホールを接続パッドとして外部端子ピンを接続する(図11(g)参照)。
【0050】接続は、半田、ろう材により行う。ろう材としては銀ろう、パラジウムろう、アルミニウムろう、金ろうを使用する。金ろうとしては、Au−Ni合金が望ましい。Au−Ni合金は、タングステンとの密着性に優れるからである。
【0051】Au/Niの比率は、〔81.5〜82.5(重量%)〕/〔18.5〜17.5(重量%)〕が望ましい。Au−Ni層の厚さは、0.1〜50μmが望ましい。接続を確保するに充分な範囲だからである。また、10-6〜10-5Paの高真空で500℃〜1000℃の高温で使用するとAu−Cu合金では劣化するが、Au−Ni合金ではこのような劣化がなく有利である。また、Au−Ni合金中の不純物元素量は全量を100重量部とした場合に1重量部未満であることが望ましい。
【0052】本発明では、必要に応じてセラミック基板に熱電対を埋め込んでおくことができる。熱電対により発熱体の温度を測定し、そのデータをもとに電圧、電流量を変えて、温度を制御することができるからである。熱電対の金属線の接合部位の大きさは、各金属線の素線径と同一か、もしくは、それよりも大きく、かつ、0.5mm以下がよい。このような構成によって、接合部分の熱容量が小さくなり、温度が正確に、また、迅速に電流値に変換されるのである。このため、温度制御性が向上してウエハの加熱面の温度分布が小さくなるのである。上記熱電対としては、例えば、JIS−C−1602(1980)に挙げられるように、K型、R型、B型、S型、E型、J型、T型熱電対が挙げられる。
【0053】K型は、Ni/Cr合金とNi合金の組合せ、R型はPt−13%Rh合金とPtの組合せ、B型は、Pt−30%Rh合金とPt−65%Rh合金の組合せ、S型は、Pt−10%Rh合金とPtの組合せ、E型は、Ni/Cr合金とCu/Ni合金の組合せ、J型はFeとCu/Ni合金の組合せ、T型は、CuとCu/ni合金の組合せである。
【0054】図8は、以上のような構成の本発明のウエハプローバを設置するための支持台11を模式的に示した断面図である。この支持台11には、冷媒の吹き出し口12が形成されており、冷媒注入口14から冷媒が吹き込まれる。また、吸引口13から空気を吸引して吸引孔8を介してウエハプローバ上に載置されたシリコンウエハ(図示せず)を溝7に吸い付けるのである。
【0055】図9(a)は、支持台の他の一例を模式的に示した縦断面図であり、(b)は、(a)図におけるB−B線断面図である。図9に示したように、この支持台では、ウエハプローバがプローブカードのテスタピンの押圧によって反らないように、多数の支持柱15が設けられている。支持台は、アルミニウム合金、ステンレスなどを使用することができる。
【0056】次に、本発明のウエハプローバの製造方法の一例を図10〜11に示した断面図に基づき説明する。
(1)まず、酸化物セラミック、窒化物セラミック、炭化物セラミックなどのセラミックの粉体をバインダおよび溶剤と混合してグリーンシート30を得る。前述したセラミック粉体としては、例えば、窒化アルミニウム、炭化ケイ素などを使用することができ、必要に応じて、イットリアなどの焼結助剤などを加えてもよい。
【0057】また、バインダとしては、アクリル系バインダ、エチルセルロース、ブチルセロソルブ、ポリビニルアルコールから選ばれる少なくとも1種が望ましい。さらに、溶媒としては、α−テルピネオール、グリコールから選ばれる少なくとも1種が望ましい。これらを混合して得られるペーストをドクターブレード法でシート状に成形してグリーンシート30を作製する。
【0058】グリーンシート30に、必要に応じてシリコンウエハの支持ピンを挿入する貫通孔や熱電対を埋め込む凹部を設けておくことができる。貫通孔や凹部は、パンチングなどで形成することができる。グリーンシート30の厚さは、0.1〜5mm程度が好ましい。
【0059】次に、グリーンシート30にガード電極、グランド電極を印刷する。印刷は、グリーンシート30の収縮率を考慮して所望のアスペクト比が得られるように行い、これによりガード電極印刷体50、グランド電極印刷体60を得る。印刷体は、導電性セラミック、金属粒子などを含む導電性ペーストを印刷することにより形成する。
【0060】これらの導電性ペースト中に含まれる導電性セラミック粒子としては、タングステンまたはモリブデンの炭化物が最適である。酸化しにくく熱伝導率が低下しにくいからである。また、金属粒子としては、例えば、タングステン、モリブデン、白金、ニッケルなどを使用することができる。
【0061】導電性セラミック粒子、金属粒子の平均粒子径は0.1〜5μmが好ましい。これらの粒子は、大きすぎても小さすぎてもペーストを印刷しにくいからである。このようなペーストとしては、金属粒子または導電性セラミック粒子85〜97重量部、アクリル系、エチルセルロース、ブチルセロソルブおよびポリビニルアルコールから選ばれる少なくとも1種のバインダ1.5〜10重量部、α−テルピネオール、グリコール、エチルアルコールおよびブタノールから選ばれる少なくとも1種の溶媒を1.5〜10重量部混合して調製したぺーストが最適である。さらに、パンチング等で形成した孔に、導電ペーストを充填してスルーホール印刷体160、170を得る。
【0062】次に、図10(a)に示すように、印刷体50、60、160、170を有するグリーンシート30と、印刷体を有さないグリーンシート30を積層する。発熱体形成側に印刷体を有さないグリーンシート30を積層するのは、スルーホールの端面が露出して、発熱体形成の焼成の際に酸化してしまうことを防止するためである。もしスルーホールの端面が露出したまま、発熱体形成の焼成を行うのであれば、ニッケルなどの酸化しにくい金属をスパッタリングする必要があり、さらに好ましくは、Au−Niの金ろうで被覆してもよい。
【0063】(2)次に、図10(b)に示すように、積層体の加熱および加圧を行い、グリーンシートおよび導電ペーストを焼結させる。加熱温度は、1000〜2000℃、加圧は100〜200kg/cm2 が好ましく、これらの加熱および加圧は、不活性ガス雰囲気下で行う。不活性ガスとしては、アルゴン、窒素などを使用することができる。この工程でスルーホール16、17、ガード電極5、グランド電極6が形成される。
【0064】(3)次に、図10(c)に示すように、焼結体の表面に溝7を設ける。溝7は、ドリル、サンドブラスト等により形成する。
(4)次に、図10(d)に示すように、焼結体の底面に導電ペーストを印刷してこれを焼成し、発熱体41を作製する。
【0065】(5)次に、図11(e)に示すように、ウエハ載置面(溝形成面)にチタン、モリブデン、ニッケル等をスパッタリングした後、無電解ニッケルめっき等を施しチャックトップ導体層2を設ける。このとき同時に、発熱体41の表面にも無電解ニッケルめっき等により保護層410を形成する。
【0066】(6)次に、図11(f)に示すように、溝7から裏面にかけて貫通する吸引孔8、外部端子接続のための袋孔180を設ける。袋孔の内壁は、その少なくとも一部が導電化され、その導電化された内壁は、ガード電極、グランド電極などと接続されていることが望ましい。
(7)最後に、図11(g)に示すように、発熱体41表面の取りつけ部位に半田ペーストを印刷した後、外部端子ピン191を乗せて、加熱してリフローする。加熱温度は、200〜500℃が好適である。
【0067】また、袋孔180にも金ろうを介して外部端子19、190を設ける。さらに、必要に応じて、有底孔を設け、その内部に熱電対を埋め込むことができる。半田は銀−鉛、鉛−スズ、ビスマス−スズなどの合金を使用することができる。なお、半田層の厚さは、0.1〜50μmが望ましい。半田による接続を確保するに充分な範囲だからである。
【0068】なお、上記説明ではウエハプローバ101(図1参照)を例にしたが、ウエハプローバ201(図5参照)を製造する場合は、発熱体をグリーンシートに印刷すればよい。また、ウエハプローバ301(図6参照)を製造する場合は、セラミック粉体にガード電極、グランド電極として金属板を、また金属線を発熱体にして埋め込み、焼結すればよい。さらに、ウエハプローバ401(図7参照)を製造する場合は、ペルチェ素子を溶射金属層を介して接合すればよい。
【0069】
【実施例】以下、本発明をさらに詳細に説明する。
(実施例1)ウエハプローバ101(図1参照)の製造(1)窒化アルミニウム粉末(トクヤマ社製、平均粒径1.1μm)100重量部、イットリア(平均粒径0.4μm)4重量部、アクリルバインダ11.5重量部、分散剤0.5重量部および1−ブタノールとエタノールとからなるアルコール53重量部を混合した組成物を用い、ドクターブレード法により成形を行って厚さ0.47mmのグリーンシートを得た。
【0070】(2)このグリーンシートを80℃で5時間乾燥させた後、パンチングにて発熱体と外部端子ピンと接続するためのスルーホール用の貫通孔を設けた。
(3)平均粒子径1μmのタングステンカーバイド粒子100重量部、アクリル系バインダ3.0重量部、α−テルピネオール溶媒3.5重量および分散剤0.3重量部を混合して導電性ペーストAとした。
【0071】また、平均粒子径3μmのタングステン粒子100重量部、アクリル系バインダ1.9重量部、α−テルピネオール溶媒3.7重量および分散剤0.2重量部を混合して導電性ペーストBとした。
【0072】次に、グリーンシートに、この導電性ペーストAを用いたスクリーン印刷で、格子状のガード電極用印刷体50、グランド電極用印刷体60を印刷印刷した。また、端子ピンと接続するためのスルーホール用の貫通孔に導電性ペーストBを充填した。
【0073】さらに、印刷されたグリーンシートおよび印刷がされていないグリーンシートを50枚積層して130℃、80kg/cm2 の圧力で一体化することにより積層体を作製した(図10(a)参照)。
【0074】(4)次に、この積層体を窒素ガス中で600℃で5時間脱脂し、1890℃、圧力150kg/cm2 で3時間ホットプレスし、厚さ4mmの窒化アルミニウム板状体を得た。得られた板状体を、直径230mmの円形状に切り出してセラミック製の板状体とした(図10(b)参照)。スルーホール16、17の大きさは、直径0.2mm、深さ0.2mmであった。また、ガード電極5、グランド電極6の厚さは10μm、ガード電極5の形成位置は、ウエハ載置面から1mm、グランド電極6の形成位置は、ウエハ載置面から1.2mmであった。
【0075】(5)上記(4)で得た板状体を、ダイアモンド砥石で研磨した後、マスクを載置し、SiC等によるブラスト処理で表面に熱電対のための凹部(図示せず)およびシリコンウエハ吸着用の溝7(幅0.5mm、深さ0.5mm)を設けた(図10(c)参照)。
【0076】(6)さらに、ウエハ載置面に対向する面に発熱体41を印刷した。印刷は導電ペーストを用いた。導電ペーストは、プリント配線板のスルーホール形成に使用されている徳力化学研究所製のソルベストPS603Dを使用した。この導電ペーストは、銀/鉛ペーストであり、酸化鉛、酸化亜鉛、シリカ、酸化ホウ素、アルミナからなる金属酸化物(それぞれの重量比率は、5/55/10/25/5)を銀100重量部に対して7.5重量部含むものであった。また、銀の形状は平均粒径4.5μmでリン片状のものであった。
【0077】(7)導電ペーストを印刷したヒータ板を780℃で加熱焼成して、導電ペースト中の銀、鉛を焼結させるとともにセラミック基板3に焼き付けた。さらに硫酸ニッケル30g/l、ほう酸30g/l、塩化アンモニウム30g/lおよびロッシェル塩60g/lを含む水溶液からなる無電解ニッケルめっき浴にヒータ板を浸漬して、銀の焼結体41の表面に厚さ1μm、ホウ素の含有量が1重量%以下のニッケル層410を析出させた。この後、ヒータ板は、120℃で3時間アニーリング処理を施した。銀の焼結体からなる発熱体は、厚さが5μm、幅2.4mmであり、面積抵抗率が7.7mΩ/□であった(図10(d))。
【0078】(8)溝7が形成された面に、スパッタリング法により、順次、チタン層、モリブデン層、ニッケル層を形成した。スパッタリングのための装置は、日本真空技術株式会社製のSV−4540を使用した。スパッタリングの条件は気圧0.6Pa、温度100℃、電力200Wであり、スパッタリング時間は、30秒から1分の範囲内で、各金属によって調整した。得られた膜の厚さは、蛍光X線分析計の画像から、チタン層は0.3μm、モリブデン層は2μm、ニッケル層は1μmであった。
【0079】(9)硫酸ニッケル30g/l、ほう酸30g/l、塩化アンモニウム30g/lおよびロッシェル塩60g/lを含む水溶液からなる無電解ニッケルめっき浴、および、硫酸ニッケル250〜350g/l、塩化ニッケル40〜70g/l、ホウ酸30〜50g/lを含み、硫酸でpH2.4〜4.5に調整した電解ニッケルめっき浴を用いて、上記(8)で得られたセラミック板を浸漬し、スパッタリングにより形成された金属層の表面に厚さ7μm、ホウ素の含有量が1重量%以下のニッケル層を析出させ、120℃で3時間アニーリングした。発熱体表面は、電流を流さず、電解ニッケルめっきで被覆されない。
【0080】さらに、表面にシアン化金カリウム2g/l、塩化アンモニウム75g/l、クエン酸ナトリウム50g/lおよび次亜リン酸ナトリウム10g/lを含む無電解金めっき液に、93℃の条件で1分間浸漬し、ニッケルめっき層15上に厚さ1μmの金めっき層を形成した(図11(e)参照)。
【0081】(10)溝7から裏面に抜ける空気吸引孔8をドリル加工により形成し、さらにスルーホール16、17を露出させるための袋孔180を設けた(図10(f)参照)。この袋孔180にNi−Au合金(Au81.5重量%、Ni18.4重量%、不純物0.1重量%)からなる金ろうを用い、970℃で加熱リフローしてコバール製の外部端子ピン19、190を接続させた(図11(g)参照)。また、発熱体に半田(スズ9/鉛1)を介してコバール製の外部端子ピン191を形成した。
【0082】(11)次に、温度制御のための複数熱電対を凹部に埋め込み、ウエハプローバヒータ101を得た。
(12)このウエハプローバ101を図8の断面形状を有するステンレス製の支持台にセラミックファイバー(イビデン社製 商品名 イビウール)からなる断熱材10を介して組み合わせた。この支持台11は冷却ガスの噴射ノズル12を有し、ウエハプローバ101の温度調整を行うことができる。また、吸引口13から空気を吸引してシリコンウエハの吸着を行う。
【0083】(実施例2)ウエハプローバ201(図5参照)の製造(1)窒化アルミニウム粉末(トクヤマ社製、平均粒径1.1μm)100重量部、イットリア(平均粒径0.4μm)4重量部、アクリルバイダー11.5重量部、分散剤0.5重量部および1−ブタノールとエタノールとからなるアルコール53重量部を混合した組成物を、ドクターブレード法により成形し、厚さ0.47mmのグリーンシートを得た。
【0084】(2)このグリーンシートを80℃で5時間乾燥させた後、パンチングにて発熱体と外部端子ピンと接続するためのスルーホール用の貫通孔を設けた。
(3)平均粒子径1μmのタングステンカーバイド粒子100重量部、アクリル系バインダ3.0重量部、α−テルピネオール溶媒3.5重量および分散剤0.3重量部を混合して導電性ペーストAとした。
【0085】また、平均粒子径3μmのタングステン粒子100重量部、アクリル系バインダ1.9重量部、α−テルピネオール溶媒3.7重量および分散剤0.2重量部を混合して導電性ペーストBとした。
【0086】次に、グリーンシートに、この導電性ペーストAを用いたスクリーン印刷で、格子状のガード電極用印刷体、グランド電極用印刷体を印刷した。さらに、発熱体を図3に示すように同心円パターンとして印刷した。
【0087】また、端子ピンと接続するためのスルーホール用の貫通孔に導電性ペーストBを充填した。さらに、印刷されたグリーンシートおよび印刷がされていないグリーンシートを50枚積層して130℃、80kg/cm2 の圧力で一体化し、積層体を作製した。
【0088】(4)次に、この積層体を窒素ガス中で600℃で5時間脱脂し、1890℃、圧力150kg/cm2 で3時間ホットプレスし、厚さ3mmの窒化アルミニウム板状体を得た。これを直径230mmの円状に切り出してセラミック製の板状体とした。スルーホールの大きさは直径0.2mm、深さ0.3mmであった。また、ガード電極5、グランド電極6の厚さは6μm、ガード電極5の形成位置は、ウエハ載置面から0.7mm、グランド電極6の形成位置は、ウエハ載置面から1.4mm、発熱体の形成位置は、ウエハ載置面から2.8mmであった。
【0089】(5)上記(4)で得た板状体を、ダイアモンド砥石で研磨した後、マスクを載置し、SiC等によるブラスト処理で表面に熱電対のための凹部(図示せず)およびシリコンウエハ吸着用の溝7(幅0.5mm、深さ0.5mm)を設けた。
【0090】(6)溝7が形成された面にスパッタリングにてチタン、モリブデン、ニッケル層を形成した。スパッタリングのための装置は、日本真空技術株式会社製のSV−4540を使用した。スパッタリングの条件は気圧0.6Pa、温度100℃、電力200Wで、スパッタリングの時間は、30秒から1分の間で、各金属により調整した。得られた膜は、蛍光X線分析計の画像からチタンは0.5μm、モリブデンは4μm、ニッケルは1.5μmであった。
【0091】(7)硫酸ニッケル30g/l、ほう酸30g/l、塩化アンモニウム30g/l、ロッシェル塩60g/lを含む水溶液からなる無電解ニッケルめっき浴に(6)で得られたセラミック板3を浸漬して、スパッタリングにより形成された金属層の表面に厚さ7μm、ホウ素の含有量が1重量%以下のニッケル層を析出させ、120℃で3時間アニーリングした。
【0092】さらに、表面にシアン化金カリウム2g/l、塩化アンモニウム75g/l、クエン酸ナトリウム50g/l、次亜リン酸ナトリウム10g/lからなる無電解金めっき液に93℃の条件で1分間浸漬して、ニッケルめっき層上に厚さ1μmの金めっき層を形成した。
【0093】(8)溝7から裏面に抜ける空気吸引孔8をドリル加工により形成し、さらにスルーホール16、17を露出させるための袋孔180を設けた。この袋孔180にNi−Au合金(Au81.5重量%、Ni18.4重量%、不純物0.1重量%)からなる金ろうを用い、970℃で加熱リフローしてコバール製の外部端子ピン19、190を接続させた。外部端子19、190は、W製でもよい。
【0094】(9)温度制御のための複数熱電対を凹部に埋め込み、ウエハプローバヒータ201を得た。
(10)このウエハプローバ201を図9の断面形状を持つステンレス製の支持台にセラミックファイバー(イビデン社製:商品名 イビウール)からなる断熱材10を介して組み合わせた。この支持台11には、ウエハプローバの反り防止のための支持柱15が形成されている。また、吸引口13から空気を吸引してシリコンウエハの吸着を行う。
【0095】(実施例3) ウエハプローバ301(図6参照)の製造(1)厚さ10μmのタングステン箔を打抜き加工することにより格子状の電極を形成した。格子状の電極2枚(ぞれぞれガード電極5、グランド電極6となるもの)およびタングステン線を窒化アルミニウム粉末(トクヤマ社製、平均粒径1.1μm)100重量部、イットリア(平均粒径0.4μm)4重量部とともに、成形型中に入れて窒素ガス中で1890℃、圧力150kg/cm2 で3時間ホットプレスし、厚さ3mmの窒化アルミニウム板状体を得た。これを直径230mmの円状に切り出して板状体とした。
(2)この板状体に対し、実施例2の(5)〜(10)の工程を実施し、ウエハプローバ301を得、実施例1と同様にウエハプローバ301を図8に示した支持台11上に載置した。
【0096】(実施例4) ウエハプローバ401(図7参照)の製造実施例1の(1)〜(5)、および、(8)〜(10)を実施した後、さらにウエハ載置面に対向する面にニッケルを溶射し、この後、鉛・テルル系のペルチェ素子を接合させ、ウエハプローバ401を得、実施例1と同様にウエハプローバ401を図8に示した支持台11上に載置した。
【0097】(実施例5) 炭化珪素をセラミック基板とするウエハプローバの製造以下に記載する事項または条件以外は、実施例3の場合と同様にして、ウエハプローバを製造した。即ち、平均粒径1.0μmの炭化ケイ素粉末100重量部を使用し、また、格子状の電極2枚(ぞれぞれガード電極5、グランド電極6となるもの)、および、表面にテトラエトキシシラン10重量%、塩酸0.5重量%および水89.5重量%からなるゾル溶液を塗布したタングステン線を使用し、1900℃の温度で焼成した。なお、ゾル溶液は焼成でSiO2 となって絶縁層を構成する。次に、実施例5で得られたウエハプローバ401を、実施例1と同様に図8に示した支持台11上に載置した。
【0098】(実施例6) アルミナをセラミック基板とするウエハプローバの製造以下に記載する工程または条件以外は、実施例1の場合と同様にして、ウエハプローバを製造した。アルミナ粉末(トクヤマ製、平均粒径1.5μm)100重量部、アクリルバイダー11.5重量部、分散剤0.5重量部および1−ブタノールとエタノールとからなるアルコール53重量部を混合した組成物を、ドクターブレード法を用いて成形し、厚さ0.5mmのグリーンシートを得た。また、焼成温度を1000℃とした。次に、実施例6で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0099】(実施例7)
(1)平均粒子径3μmのタングステン粉末を円板状の成形治具に入れて、窒素ガス中で温度1890℃、圧力150kg/cm2 で3時間ホットプレスして、直径200mm、厚さ110μmのタングステン製の多孔質チャックトップ導体層を得た。
【0100】(2)次に、実施例1の(1)〜(4)、および、(5)〜(7)と同様の工程を実施し、ガード電極、グランド電極、発熱体を有するセラミック基板を得た。
【0101】(3)上記(1)で得た多孔質チャックトップ導体層を金ろう(実施例1の(10)と同じもの)の粉末を介してセラミック基板に載置し、970℃でリフローした。
(4)実施例1の(10)〜(12)と同様の工程を実施してウエハプローバを得た。この実施例で得られたウエハプローバは、チャックトップ導体層と半導体ウエハとが均一に吸着する。
【0102】(実施例8)グリーンシートの積層枚数を増やし、セラミック基板の厚さを10mmとした以外は、実施例1と同様にしてウエハプローバを製造した。次に、実施例8で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0103】(実施例9)グリーンシートの積層枚数を増やし、セラミック基板の厚さを20mmとした以外は、実施例1と同様にしてウエハプローバを製造した。次に、実施例9で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0104】(実施例10)グリーンシートの積層枚数を増やし、セラミック基板の厚さを50mmとした以外は、実施例1と同様にしてウエハプローバを製造した。次に、実施例10で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0105】(実施例11)グリーンシートの積層枚数を増やし、セラミック基板の厚さを80mmとした以外は、実施例1と同様にしてウエハプローバを製造した。次に、実施例11で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0106】(実施例12)グリーンシートの積層枚数を増やし、セラミック基板の厚さを120mmとした以外は、実施例1と同様にしてウエハプローバを製造した。次に、実施例12で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0107】(実施例13)セラミック基板の厚さを0.55mmとした以外は、実施例7と同様にしてウエハプローバを製造した。次に、実施例13で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0108】(比較例1)基本的には、特公平3−40947号公報に記載された方法に準じ、図13に示す構造を有する金属製ウエハプローバを作製した。すなわち、このウエハプローバにおいて、チャックトップ1Bに直径230mm、厚さ15mmのステンレス鋼、その下層には、厚さ3mmの雲母3B、そのさらに下層には直径230mm、厚さ20mmの銅板100Bが配置されている。また、銅板100Bの下には、厚さ3mmの雲母3Bを介してニクロム線による発熱体4Bが接合されており、さらにその下に、雲母3Bを介してアルミナ断熱板20Bが接合されている。チャックトップの表面には溝7が形成されている。次に、比較例1で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0109】(比較例2)チャックトップ1Bは厚さ1.5mmのステンレス鋼、その下層には厚さ0.3mmの雲母3B、そのさらに下層には厚さ1.5mmの銅板100Bが配置されているほかは、比較例1と同様に構成されている金属製ウエハプローバを作製した。次に、比較例2で得られたウエハプローバを、実施例1と同様に図8に示した支持台11上に載置した。
【0110】評価方法支持台上に載置された上記実施例および比較例で製造したウエハプローバの上に、図12に示したようにシリコンウエハWを載置し、加熱などの温度制御を行いながら、プローブカード601を押圧して導通テストを行った。その際、150℃に昇温するまでの時間をそれぞれ測定した。また、15kg/cm2 の圧力でプローブカードを押圧した場合のウエハプローバの反り量について測定した。反り量は、京セラ社製 形状測定器、商品名「ナノウェイ」を使用した。なお、実施例2に係るウエハプローバは、反り防止の支持柱が形成されている支持台に最初に載置して反り量等を測定した後、支持柱が形成されていない図8に示した支持1上にも載置し、反り量等を測定した。結果を下記の表1に示した。
【0111】
【表1】

【0112】表1に示した結果から明らかなように、セラミック基板の厚さとチャックトップ導体層との厚さの比率が10000を超えると、反り量はほとんど0となるが、昇温時間が長くなることがわかる。また、実施例12では、ALNを使用しているにもかかわらず、アルミナよりも昇温特性が低下してしまう。つまり、窒化物セラミックや炭化物セラミック等の高熱伝導材料を使用するのであれば、上記比率は10000を超えないことが望ましい。材料の熱伝導率の特性が発揮できないからである。また逆に、上記比率が5以下であれば、昇温特性には優れるが、金属を使用した場合ほどではないにしろ、反り量が大きくなり、柱を支持容器内に設ける必要がある。また、表1から、アルミナのような熱伝導率が比較的低い材料を使用した場合も含めて、つまり、どんな材料を使用した場合でも、反り量の低減と昇温時間短縮を実用的な範囲で両立することができるのは、上記比率が10以上8000未満の場合と考えられる。上記比率が8000以上では、昇温特性が悪くなる。特には100〜1000が最適である。
【0113】
【発明の効果】以上説明のように、本願発明のウエハプローバは、軽量で昇温、降温特性に優れており、しかも、プローブカードを押圧した場合にも反りがなく、シリコンウエハの破損や測定ミスを有効に防止することができる。




 

 


     NEWS
会社検索順位 特許の出願数の順位が発表

URL変更
平成6年
平成7年
平成8年
平成9年
平成10年
平成11年
平成12年
平成13年


 
   お問い合わせ info@patentjp.com patentjp.com   Copyright 2007-2013